Optimal. Leaf size=23 \[ \frac {2 e^{-e^x-x} (5+x)}{-4+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^x-x} \left (3-3 x-x^2+e^x \left (10-3 x-x^2\right )\right )}{4-4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^x-x} \left (3-3 x-x^2+e^x \left (10-3 x-x^2\right )\right )}{(-2+x)^2} \, dx\\ &=\int \left (-\frac {e^{-e^x} (5+x)}{-2+x}+\frac {e^{-e^x-x} \left (3-3 x-x^2\right )}{(-2+x)^2}\right ) \, dx\\ &=-\int \frac {e^{-e^x} (5+x)}{-2+x} \, dx+\int \frac {e^{-e^x-x} \left (3-3 x-x^2\right )}{(-2+x)^2} \, dx\\ &=-\int \left (e^{-e^x}+\frac {7 e^{-e^x}}{-2+x}\right ) \, dx+\int \left (-e^{-e^x-x}-\frac {7 e^{-e^x-x}}{(-2+x)^2}-\frac {7 e^{-e^x-x}}{-2+x}\right ) \, dx\\ &=-\left (7 \int \frac {e^{-e^x-x}}{(-2+x)^2} \, dx\right )-7 \int \frac {e^{-e^x}}{-2+x} \, dx-7 \int \frac {e^{-e^x-x}}{-2+x} \, dx-\int e^{-e^x} \, dx-\int e^{-e^x-x} \, dx\\ &=-\left (7 \int \frac {e^{-e^x-x}}{(-2+x)^2} \, dx\right )-7 \int \frac {e^{-e^x}}{-2+x} \, dx-7 \int \frac {e^{-e^x-x}}{-2+x} \, dx-\operatorname {Subst}\left (\int \frac {e^{-x}}{x^2} \, dx,x,e^x\right )-\operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,e^x\right )\\ &=e^{-e^x-x}-\text {Ei}\left (-e^x\right )-7 \int \frac {e^{-e^x-x}}{(-2+x)^2} \, dx-7 \int \frac {e^{-e^x}}{-2+x} \, dx-7 \int \frac {e^{-e^x-x}}{-2+x} \, dx+\operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,e^x\right )\\ &=e^{-e^x-x}-7 \int \frac {e^{-e^x-x}}{(-2+x)^2} \, dx-7 \int \frac {e^{-e^x}}{-2+x} \, dx-7 \int \frac {e^{-e^x-x}}{-2+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 21, normalized size = 0.91 \begin {gather*} e^{-e^x-x} \left (1+\frac {7}{-2+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 18, normalized size = 0.78 \begin {gather*} \frac {{\left (x + 5\right )} e^{\left (-x - e^{x}\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 29, normalized size = 1.26 \begin {gather*} \frac {x e^{\left (-x - e^{x}\right )} + 5 \, e^{\left (-x - e^{x}\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 17, normalized size = 0.74
method | result | size |
norman | \(\frac {\left (5+x \right ) {\mathrm e}^{-{\mathrm e}^{x}-x}}{x -2}\) | \(17\) |
risch | \(\frac {\left (5+x \right ) {\mathrm e}^{-{\mathrm e}^{x}-x}}{x -2}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 18, normalized size = 0.78 \begin {gather*} \frac {{\left (x + 5\right )} e^{\left (-x - e^{x}\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 18, normalized size = 0.78 \begin {gather*} \frac {{\mathrm {e}}^{-x-{\mathrm {e}}^x}\,\left (x+5\right )}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 14, normalized size = 0.61 \begin {gather*} \frac {\left (x + 5\right ) e^{- x - e^{x}}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________