Optimal. Leaf size=29 \[ \frac {4 e^{-x^2 \left (e^{3-e^{2 x}}+\log (\log (4))\right )^2}}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.65, antiderivative size = 200, normalized size of antiderivative = 6.90, number of steps used = 1, number of rules used = 1, integrand size = 123, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {2288} \begin {gather*} \frac {4 e^{-e^{6-2 e^{2 x}} x^2-x^2 \log ^2(\log (4))} \log ^{-2 e^{3-e^{2 x}} x^2}(4) \left (x^2 \log ^2(\log (4))+e^{6-2 e^{2 x}} \left (x^2-2 e^{2 x} x^3\right )+2 e^{3-e^{2 x}} \left (x^2-e^{2 x} x^3\right ) \log (\log (4))\right )}{x^2 \left (-2 e^{2 x-2 e^{2 x}+6} x^2-2 e^{2 x-e^{2 x}+3} x^2 \log (\log (4))+e^{6-2 e^{2 x}} x+x \log ^2(\log (4))+2 e^{3-e^{2 x}} x \log (\log (4))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 e^{-e^{6-2 e^{2 x}} x^2-x^2 \log ^2(\log (4))} \log ^{-2 e^{3-e^{2 x}} x^2}(4) \left (e^{6-2 e^{2 x}} \left (x^2-2 e^{2 x} x^3\right )+2 e^{3-e^{2 x}} \left (x^2-e^{2 x} x^3\right ) \log (\log (4))+x^2 \log ^2(\log (4))\right )}{x^2 \left (e^{6-2 e^{2 x}} x-2 e^{6-2 e^{2 x}+2 x} x^2+2 e^{3-e^{2 x}} x \log (\log (4))-2 e^{3-e^{2 x}+2 x} x^2 \log (\log (4))+x \log ^2(\log (4))\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 48, normalized size = 1.66 \begin {gather*} \frac {4 e^{-x^2 \left (e^{6-2 e^{2 x}}+\log ^2(\log (4))\right )} \log ^{-2 e^{3-e^{2 x}} x^2}(4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 52, normalized size = 1.79 \begin {gather*} \frac {4 \, e^{\left (-2 \, x^{2} e^{\left (-e^{\left (2 \, x\right )} + 3\right )} \log \left (2 \, \log \relax (2)\right ) - x^{2} \log \left (2 \, \log \relax (2)\right )^{2} - x^{2} e^{\left (-2 \, e^{\left (2 \, x\right )} + 6\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 65, normalized size = 2.24
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-x^{2} \left (\ln \relax (2)^{2}+2 \,{\mathrm e}^{3-{\mathrm e}^{2 x}} \ln \relax (2)+2 \ln \relax (2) \ln \left (\ln \relax (2)\right )+2 \,{\mathrm e}^{3-{\mathrm e}^{2 x}} \ln \left (\ln \relax (2)\right )+\ln \left (\ln \relax (2)\right )^{2}+{\mathrm e}^{6-2 \,{\mathrm e}^{2 x}}\right )}}{x}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 83, normalized size = 2.86 \begin {gather*} \frac {4 \, e^{\left (-2 \, x^{2} e^{\left (-e^{\left (2 \, x\right )} + 3\right )} \log \relax (2) - x^{2} \log \relax (2)^{2} - 2 \, x^{2} e^{\left (-e^{\left (2 \, x\right )} + 3\right )} \log \left (\log \relax (2)\right ) - 2 \, x^{2} \log \relax (2) \log \left (\log \relax (2)\right ) - x^{2} \log \left (\log \relax (2)\right )^{2} - x^{2} e^{\left (-2 \, e^{\left (2 \, x\right )} + 6\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.97, size = 90, normalized size = 3.10 \begin {gather*} \frac {4\,{\mathrm {e}}^{-x^2\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^6}\,{\mathrm {e}}^{-x^2\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{-x^2\,{\ln \left (\ln \relax (2)\right )}^2}}{2^{2\,x^2\,\ln \left (\ln \relax (2)\right )}\,2^{2\,x^2\,{\mathrm {e}}^{-{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^3}\,x\,{\ln \relax (2)}^{2\,x^2\,{\mathrm {e}}^{-{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.61, size = 51, normalized size = 1.76 \begin {gather*} \frac {4 e^{- 2 x^{2} e^{3 - e^{2 x}} \log {\left (2 \log {\relax (2 )} \right )} - x^{2} e^{6 - 2 e^{2 x}} - x^{2} \log {\left (2 \log {\relax (2 )} \right )}^{2}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________