Optimal. Leaf size=28 \[ \frac {x}{-4-x+\frac {\left (2 x+\frac {x}{6+x}\right )^2}{x}+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6480-4320 x-924 x^2-70 x^3-x^4+\left (1296+864 x+216 x^2+24 x^3+x^4\right ) \log (x)}{20736-24480 x-3143 x^2+5256 x^3+1806 x^4+216 x^5+9 x^6+\left (-10368+2664 x+4344 x^2+1250 x^3+144 x^4+6 x^5\right ) \log (x)+\left (1296+864 x+216 x^2+24 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(6+x) \left (-1080-540 x-64 x^2-x^3+(6+x)^3 \log (x)\right )}{\left (144-85 x-36 x^2-3 x^3-(6+x)^2 \log (x)\right )^2} \, dx\\ &=\int \left (\frac {-1296-5652 x-3096 x^2-695 x^3-73 x^4-3 x^5}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}+\frac {(6+x)^2}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)}\right ) \, dx\\ &=\int \frac {-1296-5652 x-3096 x^2-695 x^3-73 x^4-3 x^5}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx+\int \frac {(6+x)^2}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)} \, dx\\ &=\int \left (-\frac {1296}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}-\frac {5652 x}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}-\frac {3096 x^2}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}-\frac {695 x^3}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}-\frac {73 x^4}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}-\frac {3 x^5}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2}\right ) \, dx+\int \left (\frac {36}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)}+\frac {12 x}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)}+\frac {x^2}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {x^5}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx\right )+12 \int \frac {x}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)} \, dx+36 \int \frac {1}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)} \, dx-73 \int \frac {x^4}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx-695 \int \frac {x^3}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx-1296 \int \frac {1}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx-3096 \int \frac {x^2}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx-5652 \int \frac {x}{\left (-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)\right )^2} \, dx+\int \frac {x^2}{-144+85 x+36 x^2+3 x^3+36 \log (x)+12 x \log (x)+x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.85, size = 32, normalized size = 1.14 \begin {gather*} \frac {x (6+x)^2}{-144+85 x+36 x^2+3 x^3+(6+x)^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 41, normalized size = 1.46 \begin {gather*} \frac {x^{3} + 12 \, x^{2} + 36 \, x}{3 \, x^{3} + 36 \, x^{2} + {\left (x^{2} + 12 \, x + 36\right )} \log \relax (x) + 85 \, x - 144} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 45, normalized size = 1.61 \begin {gather*} \frac {x^{3} + 12 \, x^{2} + 36 \, x}{3 \, x^{3} + x^{2} \log \relax (x) + 36 \, x^{2} + 12 \, x \log \relax (x) + 85 \, x + 36 \, \log \relax (x) - 144} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 40, normalized size = 1.43
method | result | size |
risch | \(\frac {\left (x +6\right )^{2} x}{x^{2} \ln \relax (x )+3 x^{3}+12 x \ln \relax (x )+36 x^{2}+36 \ln \relax (x )+85 x -144}\) | \(40\) |
norman | \(\frac {x^{3}+12 x^{2}+36 x}{x^{2} \ln \relax (x )+3 x^{3}+12 x \ln \relax (x )+36 x^{2}+36 \ln \relax (x )+85 x -144}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 41, normalized size = 1.46 \begin {gather*} \frac {x^{3} + 12 \, x^{2} + 36 \, x}{3 \, x^{3} + 36 \, x^{2} + {\left (x^{2} + 12 \, x + 36\right )} \log \relax (x) + 85 \, x - 144} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {4320\,x-\ln \relax (x)\,\left (x^4+24\,x^3+216\,x^2+864\,x+1296\right )+924\,x^2+70\,x^3+x^4+6480}{{\ln \relax (x)}^2\,\left (x^4+24\,x^3+216\,x^2+864\,x+1296\right )-24480\,x+\ln \relax (x)\,\left (6\,x^5+144\,x^4+1250\,x^3+4344\,x^2+2664\,x-10368\right )-3143\,x^2+5256\,x^3+1806\,x^4+216\,x^5+9\,x^6+20736} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 37, normalized size = 1.32 \begin {gather*} \frac {x^{3} + 12 x^{2} + 36 x}{3 x^{3} + 36 x^{2} + 85 x + \left (x^{2} + 12 x + 36\right ) \log {\relax (x )} - 144} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________