Optimal. Leaf size=20 \[ \frac {3 (1-x) \log \left (2-\frac {1}{x^2}\right )}{2 x^3} \]
________________________________________________________________________________________
Rubi [B] time = 0.32, antiderivative size = 95, normalized size of antiderivative = 4.75, number of steps used = 18, number of rules used = 13, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.277, Rules used = {1593, 6725, 801, 633, 31, 2466, 2455, 263, 325, 207, 2454, 2389, 2295} \begin {gather*} \frac {3}{2} \left (2-\frac {1}{x^2}\right ) \log \left (2-\frac {1}{x^2}\right )+\frac {3 \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)-3 \left (1-\sqrt {2}\right ) \log \left (1-\sqrt {2} x\right )-3 \left (1+\sqrt {2}\right ) \log \left (\sqrt {2} x+1\right )+6 \sqrt {2} \tanh ^{-1}\left (\sqrt {2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 207
Rule 263
Rule 325
Rule 633
Rule 801
Rule 1593
Rule 2295
Rule 2389
Rule 2454
Rule 2455
Rule 2466
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6-6 x+\left (9-6 x-18 x^2+12 x^3\right ) \log \left (\frac {-1+2 x^2}{x^2}\right )}{x^4 \left (-2+4 x^2\right )} \, dx\\ &=\int \left (-\frac {3 (-1+x)}{x^4 \left (-1+2 x^2\right )}+\frac {3 (-3+2 x) \log \left (2-\frac {1}{x^2}\right )}{2 x^4}\right ) \, dx\\ &=\frac {3}{2} \int \frac {(-3+2 x) \log \left (2-\frac {1}{x^2}\right )}{x^4} \, dx-3 \int \frac {-1+x}{x^4 \left (-1+2 x^2\right )} \, dx\\ &=\frac {3}{2} \int \left (-\frac {3 \log \left (2-\frac {1}{x^2}\right )}{x^4}+\frac {2 \log \left (2-\frac {1}{x^2}\right )}{x^3}\right ) \, dx-3 \int \left (\frac {1}{x^4}-\frac {1}{x^3}+\frac {2}{x^2}-\frac {2}{x}+\frac {4 (-1+x)}{-1+2 x^2}\right ) \, dx\\ &=\frac {1}{x^3}-\frac {3}{2 x^2}+\frac {6}{x}+6 \log (x)+3 \int \frac {\log \left (2-\frac {1}{x^2}\right )}{x^3} \, dx-\frac {9}{2} \int \frac {\log \left (2-\frac {1}{x^2}\right )}{x^4} \, dx-12 \int \frac {-1+x}{-1+2 x^2} \, dx\\ &=\frac {1}{x^3}-\frac {3}{2 x^2}+\frac {6}{x}+\frac {3 \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)-\frac {3}{2} \operatorname {Subst}\left (\int \log (2-x) \, dx,x,\frac {1}{x^2}\right )-3 \int \frac {1}{\left (2-\frac {1}{x^2}\right ) x^6} \, dx-\left (6 \left (1-\sqrt {2}\right )\right ) \int \frac {1}{-\sqrt {2}+2 x} \, dx-\left (6 \left (1+\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {2}+2 x} \, dx\\ &=\frac {1}{x^3}-\frac {3}{2 x^2}+\frac {6}{x}+\frac {3 \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)-3 \left (1-\sqrt {2}\right ) \log \left (1-\sqrt {2} x\right )-3 \left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2} x\right )+\frac {3}{2} \operatorname {Subst}\left (\int \log (x) \, dx,x,2-\frac {1}{x^2}\right )-3 \int \frac {1}{x^4 \left (-1+2 x^2\right )} \, dx\\ &=\frac {6}{x}+\frac {3}{2} \left (2-\frac {1}{x^2}\right ) \log \left (2-\frac {1}{x^2}\right )+\frac {3 \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)-3 \left (1-\sqrt {2}\right ) \log \left (1-\sqrt {2} x\right )-3 \left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2} x\right )-6 \int \frac {1}{x^2 \left (-1+2 x^2\right )} \, dx\\ &=\frac {3}{2} \left (2-\frac {1}{x^2}\right ) \log \left (2-\frac {1}{x^2}\right )+\frac {3 \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)-3 \left (1-\sqrt {2}\right ) \log \left (1-\sqrt {2} x\right )-3 \left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2} x\right )-12 \int \frac {1}{-1+2 x^2} \, dx\\ &=6 \sqrt {2} \tanh ^{-1}\left (\sqrt {2} x\right )+\frac {3}{2} \left (2-\frac {1}{x^2}\right ) \log \left (2-\frac {1}{x^2}\right )+\frac {3 \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)-3 \left (1-\sqrt {2}\right ) \log \left (1-\sqrt {2} x\right )-3 \left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2} x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 86, normalized size = 4.30 \begin {gather*} 6 \sqrt {2} \tanh ^{-1}\left (\frac {1}{\sqrt {2} x}\right )+\frac {3 \left (1-x+2 x^3\right ) \log \left (2-\frac {1}{x^2}\right )}{2 x^3}+6 \log (x)+3 \left (-1+\sqrt {2}\right ) \log \left (1-\sqrt {2} x\right )-3 \left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 20, normalized size = 1.00 \begin {gather*} -\frac {3 \, {\left (x - 1\right )} \log \left (\frac {2 \, x^{2} - 1}{x^{2}}\right )}{2 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 1.00 \begin {gather*} -\frac {3 \, {\left (x - 1\right )} \log \left (\frac {2 \, x^{2} - 1}{x^{2}}\right )}{2 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 21, normalized size = 1.05
method | result | size |
risch | \(-\frac {3 \left (x -1\right ) \ln \left (\frac {2 x^{2}-1}{x^{2}}\right )}{2 x^{3}}\) | \(21\) |
norman | \(\frac {-\frac {3 \ln \left (\frac {2 x^{2}-1}{x^{2}}\right ) x}{2}+\frac {3 \ln \left (\frac {2 x^{2}-1}{x^{2}}\right )}{2}}{x^{3}}\) | \(35\) |
derivativedivides | \(-3 \ln \left (\frac {1}{x^{2}}-2\right )+\frac {3 \ln \left (2-\frac {1}{x^{2}}\right ) \left (2-\frac {1}{x^{2}}\right )}{2}-3+\frac {3 \ln \left (2-\frac {1}{x^{2}}\right )}{2 x^{3}}\) | \(41\) |
default | \(-3 \ln \left (\frac {1}{x^{2}}-2\right )+\frac {3 \ln \left (2-\frac {1}{x^{2}}\right ) \left (2-\frac {1}{x^{2}}\right )}{2}-3+\frac {3 \ln \left (2-\frac {1}{x^{2}}\right )}{2 x^{3}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 44, normalized size = 2.20 \begin {gather*} -\frac {12 \, x^{2} + 3 \, {\left (x - 1\right )} \log \left (2 \, x^{2} - 1\right ) - 6 \, {\left (x - 1\right )} \log \relax (x) + 2}{2 \, x^{3}} + \frac {6 \, x^{2} + 1}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 20, normalized size = 1.00 \begin {gather*} -\frac {3\,\ln \left (\frac {2\,x^2-1}{x^2}\right )\,\left (x-1\right )}{2\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 20, normalized size = 1.00 \begin {gather*} \frac {\left (3 - 3 x\right ) \log {\left (\frac {2 x^{2} - 1}{x^{2}} \right )}}{2 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________