Optimal. Leaf size=21 \[ 2+\frac {1+x}{5+e^{\left (e^5-x\right ) x}} \]
________________________________________________________________________________________
Rubi [F] time = 3.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+e^{e^5 x-x^2} \left (1+e^5 (-1-x)+2 x+2 x^2\right )}{25+e^{2 e^5 x-2 x^2}+10 e^{e^5 x-x^2}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x^2} \left (5+e^{e^5 x-x^2} \left (1+e^5 (-1-x)+2 x+2 x^2\right )\right )}{\left (e^{e^5 x}+5 e^{x^2}\right )^2} \, dx\\ &=\int \left (\frac {5 e^{2 x^2} \left (e^5-2 x\right ) (1+x)}{\left (e^{e^5 x}+5 e^{x^2}\right )^2}+\frac {5 e^{2 x^2} \left (-1+e^5-\left (2-e^5\right ) x-2 x^2\right )}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}}+e^{-e^5 x+x^2} \left (1-e^5+\left (2-e^5\right ) x+2 x^2\right )\right ) \, dx\\ &=5 \int \frac {e^{2 x^2} \left (e^5-2 x\right ) (1+x)}{\left (e^{e^5 x}+5 e^{x^2}\right )^2} \, dx+5 \int \frac {e^{2 x^2} \left (-1+e^5-\left (2-e^5\right ) x-2 x^2\right )}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}} \, dx+\int e^{-e^5 x+x^2} \left (1-e^5+\left (2-e^5\right ) x+2 x^2\right ) \, dx\\ &=\frac {e^{-e^5 x+x^2} \left (e^5-\left (2-e^5\right ) x-2 x^2\right )}{e^5-2 x}+5 \int \left (\frac {e^{5+2 x^2}}{\left (e^{e^5 x}+5 e^{x^2}\right )^2}+\frac {e^{2 x^2} \left (-2+e^5\right ) x}{\left (e^{e^5 x}+5 e^{x^2}\right )^2}-\frac {2 e^{2 x^2} x^2}{\left (e^{e^5 x}+5 e^{x^2}\right )^2}\right ) \, dx+5 \int \left (-\frac {e^{2 x^2} \left (1-e^5\right )}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}}+\frac {e^{2 x^2} \left (-2+e^5\right ) x}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}}-\frac {2 e^{2 x^2} x^2}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}}\right ) \, dx\\ &=\frac {e^{-e^5 x+x^2} \left (e^5-\left (2-e^5\right ) x-2 x^2\right )}{e^5-2 x}+5 \int \frac {e^{5+2 x^2}}{\left (e^{e^5 x}+5 e^{x^2}\right )^2} \, dx-10 \int \frac {e^{2 x^2} x^2}{\left (e^{e^5 x}+5 e^{x^2}\right )^2} \, dx-10 \int \frac {e^{2 x^2} x^2}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}} \, dx-\left (5 \left (1-e^5\right )\right ) \int \frac {e^{2 x^2}}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}} \, dx-\left (5 \left (2-e^5\right )\right ) \int \frac {e^{2 x^2} x}{\left (e^{e^5 x}+5 e^{x^2}\right )^2} \, dx-\left (5 \left (2-e^5\right )\right ) \int \frac {e^{2 x^2} x}{e^{2 e^5 x}+5 e^{x \left (e^5+x\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 37, normalized size = 1.76 \begin {gather*} \frac {x}{5}-\frac {e^{e^5 x} (1+x)}{5 \left (e^{e^5 x}+5 e^{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 19, normalized size = 0.90 \begin {gather*} \frac {x + 1}{e^{\left (-x^{2} + x e^{5}\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 19, normalized size = 0.90 \begin {gather*} \frac {x + 1}{e^{\left (-x^{2} + x e^{5}\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 18, normalized size = 0.86
method | result | size |
risch | \(\frac {x +1}{5+{\mathrm e}^{x \left ({\mathrm e}^{5}-x \right )}}\) | \(18\) |
norman | \(\frac {x +1}{{\mathrm e}^{x \,{\mathrm e}^{5}-x^{2}}+5}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 22, normalized size = 1.05 \begin {gather*} \frac {{\left (x + 1\right )} e^{\left (x^{2}\right )}}{5 \, e^{\left (x^{2}\right )} + e^{\left (x e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 19, normalized size = 0.90 \begin {gather*} \frac {x+1}{{\mathrm {e}}^{x\,{\mathrm {e}}^5-x^2}+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.67 \begin {gather*} \frac {x + 1}{e^{- x^{2} + x e^{5}} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________