Optimal. Leaf size=21 \[ \log \left (\frac {\log \left (-2 x^3 \log (3)\right )}{e^x+\log \left (\log \left (x^2\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 \log \left (-2 x^3 \log (3)\right )+\log \left (x^2\right ) \left (3 e^x-e^x x \log \left (-2 x^3 \log (3)\right )\right )+3 \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )}{e^x x \log \left (x^2\right ) \log \left (-2 x^3 \log (3)\right )+x \log \left (x^2\right ) \log \left (-2 x^3 \log (3)\right ) \log \left (\log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 \log \left (-2 x^3 \log (3)\right )+\log \left (x^2\right ) \left (3 e^x-e^x x \log \left (-2 x^3 \log (3)\right )\right )+3 \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )}{x \log \left (x^2\right ) \log \left (-x^3 \log (9)\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=\int \left (\frac {3-x \log \left (-x^3 \log (9)\right )}{x \log \left (-x^3 \log (9)\right )}+\frac {-2+x \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )}{x \log \left (x^2\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )}\right ) \, dx\\ &=\int \frac {3-x \log \left (-x^3 \log (9)\right )}{x \log \left (-x^3 \log (9)\right )} \, dx+\int \frac {-2+x \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )}{x \log \left (x^2\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=\int \left (-1+\frac {3}{x \log \left (-x^3 \log (9)\right )}\right ) \, dx+\int \left (-\frac {2}{x \log \left (x^2\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )}+\frac {\log \left (\log \left (x^2\right )\right )}{e^x+\log \left (\log \left (x^2\right )\right )}\right ) \, dx\\ &=-x-2 \int \frac {1}{x \log \left (x^2\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )} \, dx+3 \int \frac {1}{x \log \left (-x^3 \log (9)\right )} \, dx+\int \frac {\log \left (\log \left (x^2\right )\right )}{e^x+\log \left (\log \left (x^2\right )\right )} \, dx\\ &=-x-2 \int \frac {1}{x \log \left (x^2\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )} \, dx+\int \frac {\log \left (\log \left (x^2\right )\right )}{e^x+\log \left (\log \left (x^2\right )\right )} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (-x^3 \log (9)\right )\right )\\ &=-x+\log \left (\log \left (-x^3 \log (9)\right )\right )-2 \int \frac {1}{x \log \left (x^2\right ) \left (e^x+\log \left (\log \left (x^2\right )\right )\right )} \, dx+\int \frac {\log \left (\log \left (x^2\right )\right )}{e^x+\log \left (\log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 40, normalized size = 1.90 \begin {gather*} \log \left (3 \log \left (x^2\right )+2 \left (-\frac {3}{2} \log \left (x^2\right )+\log \left (-x^3 \log (9)\right )\right )\right )-\log \left (e^x+\log \left (\log \left (x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 37, normalized size = 1.76 \begin {gather*} -\log \left (e^{x} + \log \left (\frac {2}{3} \, \log \left (-2 \, x^{3} \log \relax (3)\right ) - \frac {1}{3} \, \log \left (4 \, \log \relax (3)^{2}\right )\right )\right ) + \log \left (\log \left (-2 \, x^{3} \log \relax (3)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x e^{x} \log \left (-2 \, x^{3} \log \relax (3)\right ) - 3 \, e^{x}\right )} \log \left (x^{2}\right ) - 3 \, \log \left (x^{2}\right ) \log \left (\log \left (x^{2}\right )\right ) + 2 \, \log \left (-2 \, x^{3} \log \relax (3)\right )}{x e^{x} \log \left (-2 \, x^{3} \log \relax (3)\right ) \log \left (x^{2}\right ) + x \log \left (-2 \, x^{3} \log \relax (3)\right ) \log \left (x^{2}\right ) \log \left (\log \left (x^{2}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.71, size = 189, normalized size = 9.00
method | result | size |
risch | \(\ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+2 \pi \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \mathrm {csgn}\left (i x^{3}\right )^{3}+2 i \ln \relax (2)+2 i \ln \left (\ln \relax (3)\right )-2 \pi \right )}{6}\right )-\ln \left ({\mathrm e}^{x}+\ln \left (2 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right )\right )\) | \(189\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 27, normalized size = 1.29 \begin {gather*} -\log \left (e^{x} + \log \relax (2) + \log \left (\log \relax (x)\right )\right ) + \log \left (\frac {1}{3} \, \log \relax (2) + \log \left (-x\right ) + \frac {1}{3} \, \log \left (\log \relax (3)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {\ln \left (x^2\right )\,\left (3\,{\mathrm {e}}^x-x\,\ln \left (-2\,x^3\,\ln \relax (3)\right )\,{\mathrm {e}}^x\right )-2\,\ln \left (-2\,x^3\,\ln \relax (3)\right )+3\,\ln \left (x^2\right )\,\ln \left (\ln \left (x^2\right )\right )}{x\,\ln \left (-2\,x^3\,\ln \relax (3)\right )\,\ln \left (x^2\right )\,{\mathrm {e}}^x+x\,\ln \left (-2\,x^3\,\ln \relax (3)\right )\,\ln \left (x^2\right )\,\ln \left (\ln \left (x^2\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.84, size = 39, normalized size = 1.86 \begin {gather*} - \log {\left (e^{x} + \log {\left (\log {\left (x^{2} \right )} \right )} \right )} + \log {\left (\log {\left (x^{2} \right )} + \frac {2 \log {\left (\log {\relax (3 )} \right )}}{3} + \frac {2 \log {\relax (2 )}}{3} + \frac {2 i \pi }{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________