Optimal. Leaf size=28 \[ -1+e^{e^x}+\frac {1}{5} \left (-e^4-x\right )-\frac {5}{6} x (3+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 18, normalized size of antiderivative = 0.64, number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 2282, 2194} \begin {gather*} -\frac {5 x^2}{6}-\frac {27 x}{10}+e^{e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{30} \int \left (-81+30 e^{e^x+x}-50 x\right ) \, dx\\ &=-\frac {27 x}{10}-\frac {5 x^2}{6}+\int e^{e^x+x} \, dx\\ &=-\frac {27 x}{10}-\frac {5 x^2}{6}+\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=e^{e^x}-\frac {27 x}{10}-\frac {5 x^2}{6}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.64 \begin {gather*} e^{e^x}-\frac {27 x}{10}-\frac {5 x^2}{6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 26, normalized size = 0.93 \begin {gather*} -\frac {1}{30} \, {\left ({\left (25 \, x^{2} + 81 \, x\right )} e^{x} - 30 \, e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 12, normalized size = 0.43 \begin {gather*} -\frac {5}{6} \, x^{2} - \frac {27}{10} \, x + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 0.46
method | result | size |
default | \(-\frac {27 x}{10}+{\mathrm e}^{{\mathrm e}^{x}}-\frac {5 x^{2}}{6}\) | \(13\) |
norman | \(-\frac {27 x}{10}+{\mathrm e}^{{\mathrm e}^{x}}-\frac {5 x^{2}}{6}\) | \(13\) |
risch | \(-\frac {27 x}{10}+{\mathrm e}^{{\mathrm e}^{x}}-\frac {5 x^{2}}{6}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 12, normalized size = 0.43 \begin {gather*} -\frac {5}{6} \, x^{2} - \frac {27}{10} \, x + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.63, size = 12, normalized size = 0.43 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^x}-\frac {27\,x}{10}-\frac {5\,x^2}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.54 \begin {gather*} - \frac {5 x^{2}}{6} - \frac {27 x}{10} + e^{e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________