Optimal. Leaf size=25 \[ -4 x+\frac {e^x}{x \left (\frac {8}{3}+\frac {1}{100} x (5+x)\right )} \]
________________________________________________________________________________________
Rubi [C] time = 1.79, antiderivative size = 554, normalized size of antiderivative = 22.16, number of steps used = 29, number of rules used = 5, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6688, 6742, 2177, 2178, 2270} \begin {gather*} \frac {3 \left (3-5 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (5 \sqrt {15}+3 i\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3-5 i \sqrt {15}\right )\right )\right )}{2000}-\frac {3 \left (125-3 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (5 \sqrt {15}+3 i\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3-5 i \sqrt {15}\right )\right )\right )}{2000}+\frac {3}{200} i \sqrt {\frac {3}{5}} e^{\frac {5}{6} i \left (5 \sqrt {15}+3 i\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3-5 i \sqrt {15}\right )\right )\right )+\frac {183 e^{\frac {5}{6} i \left (5 \sqrt {15}+3 i\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3-5 i \sqrt {15}\right )\right )\right )}{1000}+\frac {3 \left (3+5 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3+5 i \sqrt {15}\right )\right )\right )}{2000}-\frac {3 \left (125+3 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3+5 i \sqrt {15}\right )\right )\right )}{2000}-\frac {3}{200} i \sqrt {\frac {3}{5}} e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3+5 i \sqrt {15}\right )\right )\right )+\frac {183 e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (6 x+5 \left (3+5 i \sqrt {15}\right )\right )\right )}{1000}-4 x-\frac {9 \left (3-5 i \sqrt {15}\right ) e^x}{1000 \left (6 x+5 \left (3-5 i \sqrt {15}\right )\right )}-\frac {549 e^x}{500 \left (6 x+5 \left (3-5 i \sqrt {15}\right )\right )}-\frac {9 \left (3+5 i \sqrt {15}\right ) e^x}{1000 \left (6 x+5 \left (3+5 i \sqrt {15}\right )\right )}-\frac {549 e^x}{500 \left (6 x+5 \left (3+5 i \sqrt {15}\right )\right )}+\frac {3 e^x}{8 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 2270
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4+\frac {300 e^x \left (-800+770 x+6 x^2+3 x^3\right )}{x^2 \left (800+15 x+3 x^2\right )^2}\right ) \, dx\\ &=-4 x+300 \int \frac {e^x \left (-800+770 x+6 x^2+3 x^3\right )}{x^2 \left (800+15 x+3 x^2\right )^2} \, dx\\ &=-4 x+300 \int \left (-\frac {e^x}{800 x^2}+\frac {e^x}{800 x}+\frac {3 e^x (-305+3 x)}{160 \left (800+15 x+3 x^2\right )^2}-\frac {3 e^x (4+x)}{800 \left (800+15 x+3 x^2\right )}\right ) \, dx\\ &=-4 x-\frac {3}{8} \int \frac {e^x}{x^2} \, dx+\frac {3}{8} \int \frac {e^x}{x} \, dx-\frac {9}{8} \int \frac {e^x (4+x)}{800+15 x+3 x^2} \, dx+\frac {45}{8} \int \frac {e^x (-305+3 x)}{\left (800+15 x+3 x^2\right )^2} \, dx\\ &=\frac {3 e^x}{8 x}-4 x+\frac {3 \text {Ei}(x)}{8}-\frac {3}{8} \int \frac {e^x}{x} \, dx-\frac {9}{8} \int \left (\frac {\left (1-\frac {3}{25} i \sqrt {\frac {3}{5}}\right ) e^x}{15-25 i \sqrt {15}+6 x}+\frac {\left (1+\frac {3}{25} i \sqrt {\frac {3}{5}}\right ) e^x}{15+25 i \sqrt {15}+6 x}\right ) \, dx+\frac {45}{8} \int \left (-\frac {305 e^x}{\left (800+15 x+3 x^2\right )^2}+\frac {3 e^x x}{\left (800+15 x+3 x^2\right )^2}\right ) \, dx\\ &=\frac {3 e^x}{8 x}-4 x+\frac {135}{8} \int \frac {e^x x}{\left (800+15 x+3 x^2\right )^2} \, dx-\frac {13725}{8} \int \frac {e^x}{\left (800+15 x+3 x^2\right )^2} \, dx-\frac {\left (9 \left (125-3 i \sqrt {15}\right )\right ) \int \frac {e^x}{15-25 i \sqrt {15}+6 x} \, dx}{1000}-\frac {\left (9 \left (125+3 i \sqrt {15}\right )\right ) \int \frac {e^x}{15+25 i \sqrt {15}+6 x} \, dx}{1000}\\ &=\frac {3 e^x}{8 x}-4 x-\frac {3 \left (125-3 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )}{2000}-\frac {3 \left (125+3 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )}{2000}+\frac {135}{8} \int \left (-\frac {2 \left (-15+25 i \sqrt {15}\right ) e^x}{3125 \left (-15+25 i \sqrt {15}-6 x\right )^2}-\frac {2 i \sqrt {\frac {3}{5}} e^x}{15625 \left (-15+25 i \sqrt {15}-6 x\right )}-\frac {2 \left (-15-25 i \sqrt {15}\right ) e^x}{3125 \left (15+25 i \sqrt {15}+6 x\right )^2}-\frac {2 i \sqrt {\frac {3}{5}} e^x}{15625 \left (15+25 i \sqrt {15}+6 x\right )}\right ) \, dx-\frac {13725}{8} \int \left (-\frac {12 e^x}{3125 \left (-15+25 i \sqrt {15}-6 x\right )^2}+\frac {4 i \sqrt {\frac {3}{5}} e^x}{78125 \left (-15+25 i \sqrt {15}-6 x\right )}-\frac {12 e^x}{3125 \left (15+25 i \sqrt {15}+6 x\right )^2}+\frac {4 i \sqrt {\frac {3}{5}} e^x}{78125 \left (15+25 i \sqrt {15}+6 x\right )}\right ) \, dx\\ &=\frac {3 e^x}{8 x}-4 x-\frac {3 \left (125-3 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )}{2000}-\frac {3 \left (125+3 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )}{2000}+\frac {1647}{250} \int \frac {e^x}{\left (-15+25 i \sqrt {15}-6 x\right )^2} \, dx+\frac {1647}{250} \int \frac {e^x}{\left (15+25 i \sqrt {15}+6 x\right )^2} \, dx-\frac {\left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {e^x}{-15+25 i \sqrt {15}-6 x} \, dx}{12500}-\frac {\left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {e^x}{15+25 i \sqrt {15}+6 x} \, dx}{12500}-\frac {\left (549 i \sqrt {\frac {3}{5}}\right ) \int \frac {e^x}{-15+25 i \sqrt {15}-6 x} \, dx}{6250}-\frac {\left (549 i \sqrt {\frac {3}{5}}\right ) \int \frac {e^x}{15+25 i \sqrt {15}+6 x} \, dx}{6250}+\frac {1}{500} \left (27 \left (3-5 i \sqrt {15}\right )\right ) \int \frac {e^x}{\left (-15+25 i \sqrt {15}-6 x\right )^2} \, dx+\frac {1}{500} \left (27 \left (3+5 i \sqrt {15}\right )\right ) \int \frac {e^x}{\left (15+25 i \sqrt {15}+6 x\right )^2} \, dx\\ &=\frac {3 e^x}{8 x}-4 x-\frac {549 e^x}{500 \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )}-\frac {9 \left (3-5 i \sqrt {15}\right ) e^x}{1000 \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )}-\frac {549 e^x}{500 \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )}-\frac {9 \left (3+5 i \sqrt {15}\right ) e^x}{1000 \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )}+\frac {3}{200} i \sqrt {\frac {3}{5}} e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )-\frac {3 \left (125-3 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )}{2000}-\frac {3}{200} i \sqrt {\frac {3}{5}} e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )-\frac {3 \left (125+3 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )}{2000}-\frac {549}{500} \int \frac {e^x}{-15+25 i \sqrt {15}-6 x} \, dx+\frac {549}{500} \int \frac {e^x}{15+25 i \sqrt {15}+6 x} \, dx-\frac {\left (9 \left (3-5 i \sqrt {15}\right )\right ) \int \frac {e^x}{-15+25 i \sqrt {15}-6 x} \, dx}{1000}+\frac {\left (9 \left (3+5 i \sqrt {15}\right )\right ) \int \frac {e^x}{15+25 i \sqrt {15}+6 x} \, dx}{1000}\\ &=\frac {3 e^x}{8 x}-4 x-\frac {549 e^x}{500 \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )}-\frac {9 \left (3-5 i \sqrt {15}\right ) e^x}{1000 \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )}-\frac {549 e^x}{500 \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )}-\frac {9 \left (3+5 i \sqrt {15}\right ) e^x}{1000 \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )}+\frac {183 e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )}{1000}+\frac {3}{200} i \sqrt {\frac {3}{5}} e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )-\frac {3 \left (125-3 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )}{2000}+\frac {3 \left (3-5 i \sqrt {15}\right ) e^{\frac {5}{6} i \left (3 i+5 \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3-5 i \sqrt {15}\right )+6 x\right )\right )}{2000}+\frac {183 e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )}{1000}-\frac {3}{200} i \sqrt {\frac {3}{5}} e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )-\frac {3 \left (125+3 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )}{2000}+\frac {3 \left (3+5 i \sqrt {15}\right ) e^{-\frac {5}{6} \left (3+5 i \sqrt {15}\right )} \text {Ei}\left (\frac {1}{6} \left (5 \left (3+5 i \sqrt {15}\right )+6 x\right )\right )}{2000}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 36, normalized size = 1.44 \begin {gather*} -4 x+300 e^x \left (\frac {1}{800 x}-\frac {3 (5+x)}{800 \left (800+15 x+3 x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 38, normalized size = 1.52 \begin {gather*} -\frac {4 \, {\left (3 \, x^{4} + 15 \, x^{3} + 800 \, x^{2} - 75 \, e^{x}\right )}}{3 \, x^{3} + 15 \, x^{2} + 800 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 38, normalized size = 1.52 \begin {gather*} -\frac {4 \, {\left (3 \, x^{4} + 15 \, x^{3} + 800 \, x^{2} - 75 \, e^{x}\right )}}{3 \, x^{3} + 15 \, x^{2} + 800 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 0.96
method | result | size |
risch | \(-4 x +\frac {300 \,{\mathrm e}^{x}}{x \left (3 x^{2}+15 x +800\right )}\) | \(24\) |
norman | \(\frac {-2900 x^{2}+16000 x -12 x^{4}+300 \,{\mathrm e}^{x}}{x \left (3 x^{2}+15 x +800\right )}\) | \(35\) |
default | \(-\frac {4096 \left (6 x +15\right )}{15 \left (3 x^{2}+15 x +800\right )}-\frac {256 \left (-15 x -1600\right )}{25 \left (3 x^{2}+15 x +800\right )}-\frac {20100 \left (-\frac {61 x}{1125}+\frac {32}{225}\right )}{x^{2}+5 x +\frac {800}{3}}-\frac {360 \left (\frac {31 x}{75}+\frac {1952}{135}\right )}{x^{2}+5 x +\frac {800}{3}}-4 x +\frac {-\frac {6692 x}{15}+3968}{x^{2}+5 x +\frac {800}{3}}+\frac {3 \,{\mathrm e}^{x} \left (279 x^{2}+1635 x +50000\right )}{500 \left (3 x^{2}+15 x +800\right ) x}-\frac {231 \,{\mathrm e}^{x} \left (3 x -305\right )}{500 \left (3 x^{2}+15 x +800\right )}+\frac {72 \,{\mathrm e}^{x} \left (5+2 x \right )}{125 \left (3 x^{2}+15 x +800\right )}-\frac {12 \,{\mathrm e}^{x} \left (3 x +320\right )}{25 \left (3 x^{2}+15 x +800\right )}\) | \(186\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 119, normalized size = 4.76 \begin {gather*} -4 \, x - \frac {4 \, {\left (1673 \, x - 14880\right )}}{5 \, {\left (3 \, x^{2} + 15 \, x + 800\right )}} - \frac {8 \, {\left (279 \, x + 9760\right )}}{5 \, {\left (3 \, x^{2} + 15 \, x + 800\right )}} + \frac {268 \, {\left (61 \, x - 160\right )}}{5 \, {\left (3 \, x^{2} + 15 \, x + 800\right )}} + \frac {256 \, {\left (3 \, x + 320\right )}}{5 \, {\left (3 \, x^{2} + 15 \, x + 800\right )}} - \frac {4096 \, {\left (2 \, x + 5\right )}}{5 \, {\left (3 \, x^{2} + 15 \, x + 800\right )}} + \frac {300 \, e^{x}}{3 \, x^{3} + 15 \, x^{2} + 800 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.86, size = 23, normalized size = 0.92 \begin {gather*} \frac {300\,{\mathrm {e}}^x}{x\,\left (3\,x^2+15\,x+800\right )}-4\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.80 \begin {gather*} - 4 x + \frac {300 e^{x}}{3 x^{3} + 15 x^{2} + 800 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________