Optimal. Leaf size=35 \[ \frac {x}{-\frac {x}{2+e^{8 x \left (-2-x+\frac {x^2}{4}\right )}}+\log (3-x)} \]
________________________________________________________________________________________
Rubi [F] time = 18.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-e^{-32 x-16 x^2+4 x^3} x+e^{-16 x-8 x^2+2 x^3} \left (-4 x-48 x^2-32 x^3+34 x^4-6 x^5\right )+\left (-12+e^{-32 x-16 x^2+4 x^3} (-3+x)+4 x+e^{-16 x-8 x^2+2 x^3} (-12+4 x)\right ) \log (3-x)}{-3 x^2+x^3+\left (12 x-4 x^2+e^{-16 x-8 x^2+2 x^3} \left (6 x-2 x^2\right )\right ) \log (3-x)+\left (-12+e^{-32 x-16 x^2+4 x^3} (-3+x)+4 x+e^{-16 x-8 x^2+2 x^3} (-12+4 x)\right ) \log ^2(3-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (e^{4 x^3}+4 e^{16 x (2+x)}+e^{2 x \left (8+4 x+x^2\right )} \left (4+48 x+32 x^2-34 x^3+6 x^4\right )\right )-\left (e^{2 x^3}+2 e^{8 x (2+x)}\right )^2 (-3+x) \log (3-x)}{(3-x) \left (e^{8 x (2+x)} x-\left (e^{2 x^3}+2 e^{8 x (2+x)}\right ) \log (3-x)\right )^2} \, dx\\ &=\int \left (-\frac {4 e^{16 x (2+x)} x}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}-\frac {2 e^{2 x \left (8+4 x+x^2\right )} x \left (2+24 x+16 x^2-17 x^3+3 x^4\right )}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}-\frac {e^{4 x^3} x}{(-3+x) \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2}+\frac {\left (e^{2 x^3}+2 e^{8 x (2+x)}\right )^2 \log (3-x)}{\left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x \left (2+24 x+16 x^2-17 x^3+3 x^4\right )}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\right )-4 \int \frac {e^{16 x (2+x)} x}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-\int \frac {e^{4 x^3} x}{(-3+x) \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+\int \frac {\left (e^{2 x^3}+2 e^{8 x (2+x)}\right )^2 \log (3-x)}{\left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\\ &=-\left (2 \int \left (\frac {2 e^{2 x \left (8+4 x+x^2\right )}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}+\frac {6 e^{2 x \left (8+4 x+x^2\right )}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}-\frac {8 e^{2 x \left (8+4 x+x^2\right )} x^2}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}-\frac {8 e^{2 x \left (8+4 x+x^2\right )} x^3}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}+\frac {3 e^{2 x \left (8+4 x+x^2\right )} x^4}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}\right ) \, dx\right )-4 \int \left (\frac {e^{16 x (2+x)}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}+\frac {3 e^{16 x (2+x)}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}\right ) \, dx-\int \left (\frac {e^{4 x^3}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}+\frac {3 e^{4 x^3}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2}\right ) \, dx+\int \left (\frac {4 \log (3-x)}{(x-2 \log (3-x))^2}+\frac {e^{4 x^3} x^2 \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2}-\frac {4 e^{2 x^3} x \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )}\right ) \, dx\\ &=-\left (3 \int \frac {e^{4 x^3}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\right )+4 \int \frac {\log (3-x)}{(x-2 \log (3-x))^2} \, dx-4 \int \frac {e^{16 x (2+x)}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{2 x \left (8+4 x+x^2\right )}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{2 x^3} x \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )} \, dx-6 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^4}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-12 \int \frac {e^{16 x (2+x)}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-12 \int \frac {e^{2 x \left (8+4 x+x^2\right )}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+16 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^2}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+16 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^3}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-\int \frac {e^{4 x^3}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+\int \frac {e^{4 x^3} x^2 \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\\ &=-\left (3 \int \frac {e^{4 x^3}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\right )+4 \int \left (\frac {x}{2 (x-2 \log (3-x))^2}-\frac {1}{2 (x-2 \log (3-x))}\right ) \, dx-4 \int \frac {e^{16 x (2+x)}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{2 x \left (8+4 x+x^2\right )}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{2 x^3} x \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )} \, dx-6 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^4}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-12 \int \frac {e^{16 x (2+x)}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-12 \int \frac {e^{2 x \left (8+4 x+x^2\right )}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+16 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^2}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+16 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^3}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-\int \frac {e^{4 x^3}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+\int \frac {e^{4 x^3} x^2 \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\\ &=2 \int \frac {x}{(x-2 \log (3-x))^2} \, dx-2 \int \frac {1}{x-2 \log (3-x)} \, dx-3 \int \frac {e^{4 x^3}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{16 x (2+x)}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{2 x \left (8+4 x+x^2\right )}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-4 \int \frac {e^{2 x^3} x \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )} \, dx-6 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^4}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-12 \int \frac {e^{16 x (2+x)}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-12 \int \frac {e^{2 x \left (8+4 x+x^2\right )}}{(-3+x) \left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+16 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^2}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+16 \int \frac {e^{2 x \left (8+4 x+x^2\right )} x^3}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx-\int \frac {e^{4 x^3}}{\left (e^{8 x (2+x)} x-e^{2 x^3} \log (3-x)-2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx+\int \frac {e^{4 x^3} x^2 \log (3-x)}{(x-2 \log (3-x))^2 \left (-e^{8 x (2+x)} x+e^{2 x^3} \log (3-x)+2 e^{8 x (2+x)} \log (3-x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 59, normalized size = 1.69 \begin {gather*} \frac {\left (e^{2 x^3}+2 e^{8 x (2+x)}\right ) x}{-e^{8 x (2+x)} x+\left (e^{2 x^3}+2 e^{8 x (2+x)}\right ) \log (3-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 52, normalized size = 1.49 \begin {gather*} \frac {x e^{\left (2 \, x^{3} - 8 \, x^{2} - 16 \, x\right )} + 2 \, x}{{\left (e^{\left (2 \, x^{3} - 8 \, x^{2} - 16 \, x\right )} + 2\right )} \log \left (-x + 3\right ) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.26, size = 58, normalized size = 1.66 \begin {gather*} \frac {x e^{\left (2 \, x^{3} - 8 \, x^{2} - 16 \, x\right )} + 2 \, x}{e^{\left (2 \, x^{3} - 8 \, x^{2} - 16 \, x\right )} \log \left (-x + 3\right ) - x + 2 \, \log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 50, normalized size = 1.43
method | result | size |
risch | \(-\frac {x \left ({\mathrm e}^{2 x \left (x^{2}-4 x -8\right )}+2\right )}{-\ln \left (3-x \right ) {\mathrm e}^{2 x \left (x^{2}-4 x -8\right )}+x -2 \ln \left (3-x \right )}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 66, normalized size = 1.89 \begin {gather*} -\frac {x e^{\left (2 \, x^{3}\right )} + 2 \, x e^{\left (8 \, x^{2} + 16 \, x\right )}}{x e^{\left (8 \, x^{2} + 16 \, x\right )} - {\left (e^{\left (2 \, x^{3}\right )} + 2 \, e^{\left (8 \, x^{2} + 16 \, x\right )}\right )} \log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.46, size = 89, normalized size = 2.54 \begin {gather*} \frac {6\,\ln \left (3-x\right )-x+3\,{\mathrm {e}}^{2\,x^3-8\,x^2-16\,x}\,\ln \left (3-x\right )+x\,{\mathrm {e}}^{2\,x^3-8\,x^2-16\,x}}{2\,\ln \left (3-x\right )-x+{\mathrm {e}}^{2\,x^3-8\,x^2-16\,x}\,\ln \left (3-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.72, size = 46, normalized size = 1.31 \begin {gather*} \frac {x^{2}}{- x \log {\left (3 - x \right )} + e^{2 x^{3} - 8 x^{2} - 16 x} \log {\left (3 - x \right )}^{2} + 2 \log {\left (3 - x \right )}^{2}} + \frac {x}{\log {\left (3 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________