Optimal. Leaf size=15 \[ 1+x+\frac {(-5+x) x}{5 \log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 22, normalized size of antiderivative = 1.47, number of steps used = 1, number of rules used = 1, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {9} \begin {gather*} \frac {(2 x-5 (1-\log (4)))^2}{20 \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {(2 x-5 (1-\log (4)))^2}{20 \log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 20, normalized size = 1.33 \begin {gather*} \frac {-5 x+x^2+5 x \log (4)}{5 \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 18, normalized size = 1.20 \begin {gather*} \frac {x^{2} + 10 \, x \log \relax (2) - 5 \, x}{10 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 1.20 \begin {gather*} \frac {x^{2} + 10 \, x \log \relax (2) - 5 \, x}{10 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 1.00
method | result | size |
gosper | \(\frac {x \left (x +10 \ln \relax (2)-5\right )}{10 \ln \relax (2)}\) | \(15\) |
default | \(\frac {10 x \ln \relax (2)+x^{2}-5 x}{10 \ln \relax (2)}\) | \(19\) |
risch | \(x +\frac {x^{2}}{10 \ln \relax (2)}-\frac {x}{2 \ln \relax (2)}\) | \(19\) |
norman | \(\frac {x^{2}}{10 \ln \relax (2)}+\frac {\left (2 \ln \relax (2)-1\right ) x}{2 \ln \relax (2)}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 1.20 \begin {gather*} \frac {x^{2} + 10 \, x \log \relax (2) - 5 \, x}{10 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.17, size = 15, normalized size = 1.00 \begin {gather*} \frac {5\,{\left (\frac {x}{5}+\ln \relax (2)-\frac {1}{2}\right )}^2}{2\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 20, normalized size = 1.33 \begin {gather*} \frac {x^{2}}{10 \log {\relax (2 )}} + \frac {x \left (-1 + 2 \log {\relax (2 )}\right )}{2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________