Optimal. Leaf size=33 \[ \frac {4 \left (-e^2+x\right )}{2+2 x-\frac {5}{5+x}-\log \left (-5+\frac {x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2000-600 x-80 x^2+12 x^3+e^2 \left (-4500-1420 x-84 x^2+8 x^3\right )+\left (2000+700 x+40 x^2-4 x^3\right ) \log \left (\frac {1}{4} (-20+x)\right )}{-500-2375 x-3160 x^2-796 x^3-32 x^4+4 x^5+\left (1000+2550 x+750 x^2+36 x^3-4 x^4\right ) \log \left (\frac {1}{4} (-20+x)\right )+\left (-500-175 x-10 x^2+x^3\right ) \log ^2\left (\frac {1}{4} (-20+x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (500+150 x+20 x^2-3 x^3+e^2 \left (1125+355 x+21 x^2-2 x^3\right )+(-20+x) (5+x)^2 \log \left (-5+\frac {x}{4}\right )\right )}{(20-x) \left (5+12 x+2 x^2-(5+x) \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx\\ &=4 \int \frac {500+150 x+20 x^2-3 x^3+e^2 \left (1125+355 x+21 x^2-2 x^3\right )+(-20+x) (5+x)^2 \log \left (-5+\frac {x}{4}\right )}{(20-x) \left (5+12 x+2 x^2-(5+x) \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx\\ &=4 \int \left (\frac {\left (e^2-x\right ) \left (-1125-355 x-21 x^2+2 x^3\right )}{(-20+x) \left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2}+\frac {5+x}{5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )}\right ) \, dx\\ &=4 \int \frac {\left (e^2-x\right ) \left (-1125-355 x-21 x^2+2 x^3\right )}{(-20+x) \left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx+4 \int \frac {5+x}{5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )} \, dx\\ &=4 \int \left (\frac {25 \left (25+e^2\right )}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2}-\frac {625 \left (-20+e^2\right )}{(-20+x) \left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2}+\frac {\left (-25+19 e^2\right ) x}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2}+\frac {\left (-19+2 e^2\right ) x^2}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2}-\frac {2 x^3}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2}\right ) \, dx+4 \int \left (\frac {5}{5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )}+\frac {x}{5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )}\right ) \, dx\\ &=4 \int \frac {x}{5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )} \, dx-8 \int \frac {x^3}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx+20 \int \frac {1}{5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )} \, dx-\left (4 \left (25-19 e^2\right )\right ) \int \frac {x}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx-\left (4 \left (19-2 e^2\right )\right ) \int \frac {x^2}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx+\left (2500 \left (20-e^2\right )\right ) \int \frac {1}{(-20+x) \left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx+\left (100 \left (25+e^2\right )\right ) \int \frac {1}{\left (5+12 x+2 x^2-5 \log \left (-5+\frac {x}{4}\right )-x \log \left (-5+\frac {x}{4}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 37, normalized size = 1.12 \begin {gather*} \frac {4 (5+x) \left (-e^2+x\right )}{5+12 x+2 x^2-(5+x) \log \left (-5+\frac {x}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 39, normalized size = 1.18 \begin {gather*} \frac {4 \, {\left (x^{2} - {\left (x + 5\right )} e^{2} + 5 \, x\right )}}{2 \, x^{2} - {\left (x + 5\right )} \log \left (\frac {1}{4} \, x - 5\right ) + 12 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 47, normalized size = 1.42 \begin {gather*} \frac {4 \, {\left (x^{2} - x e^{2} + 5 \, x - 5 \, e^{2}\right )}}{2 \, x^{2} - x \log \left (\frac {1}{4} \, x - 5\right ) + 12 \, x - 5 \, \log \left (\frac {1}{4} \, x - 5\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 41, normalized size = 1.24
method | result | size |
risch | \(-\frac {4 \left ({\mathrm e}^{2}-x \right ) \left (5+x \right )}{2 x^{2}-\ln \left (\frac {x}{4}-5\right ) x +12 x -5 \ln \left (\frac {x}{4}-5\right )+5}\) | \(41\) |
norman | \(\frac {\left (-4-4 \,{\mathrm e}^{2}\right ) x +10 \ln \left (\frac {x}{4}-5\right )-10+2 \ln \left (\frac {x}{4}-5\right ) x -20 \,{\mathrm e}^{2}}{2 x^{2}-\ln \left (\frac {x}{4}-5\right ) x +12 x -5 \ln \left (\frac {x}{4}-5\right )+5}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 46, normalized size = 1.39 \begin {gather*} \frac {4 \, {\left (x^{2} - x {\left (e^{2} - 5\right )} - 5 \, e^{2}\right )}}{2 \, x^{2} + 2 \, x {\left (\log \relax (2) + 6\right )} - {\left (x + 5\right )} \log \left (x - 20\right ) + 10 \, \log \relax (2) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.26, size = 113, normalized size = 3.42 \begin {gather*} \frac {4\,\left (112500\,x-112500\,{\mathrm {e}}^2-52375\,x\,{\mathrm {e}}^2-6300\,x^2\,{\mathrm {e}}^2+240\,x^3\,{\mathrm {e}}^2+51\,x^4\,{\mathrm {e}}^2-2\,x^5\,{\mathrm {e}}^2+52375\,x^2+6300\,x^3-240\,x^4-51\,x^5+2\,x^6\right )}{\left (12\,x+2\,x^2-\ln \left (\frac {x}{4}-5\right )\,\left (x+5\right )+5\right )\,\left (2\,x^4-61\,x^3+65\,x^2+5975\,x+22500\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 39, normalized size = 1.18 \begin {gather*} \frac {- 4 x^{2} - 20 x + 4 x e^{2} + 20 e^{2}}{- 2 x^{2} - 12 x + \left (x + 5\right ) \log {\left (\frac {x}{4} - 5 \right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________