Optimal. Leaf size=26 \[ \frac {2-x}{-2-e^x+30 \left (2 x+x^2\right ) \log (5)} \]
________________________________________________________________________________________
Rubi [F] time = 1.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+e^x (3-x)+\left (-120-120 x+30 x^2\right ) \log (5)}{4+e^{2 x}+\left (-240 x-120 x^2\right ) \log (5)+\left (3600 x^2+3600 x^3+900 x^4\right ) \log ^2(5)+e^x \left (4+\left (-120 x-60 x^2\right ) \log (5)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^x (-3+x)+2 \left (1-60 \log (5)-60 x \log (5)+15 x^2 \log (5)\right )}{\left (2+e^x-60 x \log (5)-30 x^2 \log (5)\right )^2} \, dx\\ &=\int \left (-\frac {2 (-2+x) \left (-1-30 \log (5)+15 x^2 \log (5)\right )}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2}+\frac {-3+x}{-2-e^x+60 x \log (5)+30 x^2 \log (5)}\right ) \, dx\\ &=-\left (2 \int \frac {(-2+x) \left (-1-30 \log (5)+15 x^2 \log (5)\right )}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2} \, dx\right )+\int \frac {-3+x}{-2-e^x+60 x \log (5)+30 x^2 \log (5)} \, dx\\ &=-\left (2 \int \left (-\frac {30 x^2 \log (5)}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2}+\frac {15 x^3 \log (5)}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2}+\frac {2 (1+30 \log (5))}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2}-\frac {x (1+30 \log (5))}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2}\right ) \, dx\right )+\int \left (\frac {3}{2+e^x-60 x \log (5)-30 x^2 \log (5)}+\frac {x}{-2-e^x+60 x \log (5)+30 x^2 \log (5)}\right ) \, dx\\ &=3 \int \frac {1}{2+e^x-60 x \log (5)-30 x^2 \log (5)} \, dx-(30 \log (5)) \int \frac {x^3}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2} \, dx+(60 \log (5)) \int \frac {x^2}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2} \, dx+(2 (1+30 \log (5))) \int \frac {x}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2} \, dx-(4 (1+30 \log (5))) \int \frac {1}{\left (-2-e^x+60 x \log (5)+30 x^2 \log (5)\right )^2} \, dx+\int \frac {x}{-2-e^x+60 x \log (5)+30 x^2 \log (5)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 23, normalized size = 0.88 \begin {gather*} \frac {-2+x}{2+e^x-60 x \log (5)-30 x^2 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 24, normalized size = 0.92 \begin {gather*} -\frac {x - 2}{30 \, {\left (x^{2} + 2 \, x\right )} \log \relax (5) - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 0.96 \begin {gather*} -\frac {x - 2}{30 \, x^{2} \log \relax (5) + 60 \, x \log \relax (5) - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 26, normalized size = 1.00
method | result | size |
risch | \(-\frac {x -2}{30 x^{2} \ln \relax (5)+60 x \ln \relax (5)-{\mathrm e}^{x}-2}\) | \(26\) |
norman | \(\frac {2-x}{30 x^{2} \ln \relax (5)+60 x \ln \relax (5)-{\mathrm e}^{x}-2}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 25, normalized size = 0.96 \begin {gather*} -\frac {x - 2}{30 \, x^{2} \log \relax (5) + 60 \, x \log \relax (5) - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.63, size = 22, normalized size = 0.85 \begin {gather*} \frac {x-2}{{\mathrm {e}}^x-60\,x\,\ln \relax (5)-30\,x^2\,\ln \relax (5)+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.85 \begin {gather*} \frac {x - 2}{- 30 x^{2} \log {\relax (5 )} - 60 x \log {\relax (5 )} + e^{x} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________