Optimal. Leaf size=24 \[ e^{x-x^3 \left (2+\frac {1}{x^2+(16+x)^2}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 10.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {65536 x+16384 x^2-261121 x^3-65536 x^4-8196 x^5-512 x^6-16 x^7}{65536+16384 x+2048 x^2+128 x^3+4 x^4}\right ) \left (8388608+3145728 x-100467072 x^2-37765136 x^3-7081471 x^4-786624 x^5-55300 x^6-2304 x^7-48 x^8\right )}{8388608+3145728 x+589824 x^2+65536 x^3+4608 x^4+192 x^5+4 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) \left (8388608+3145728 x-100467072 x^2-37765136 x^3-7081471 x^4-786624 x^5-55300 x^6-2304 x^7-48 x^8\right )}{4 \left (128+16 x+x^2\right )^3} \, dx\\ &=\frac {1}{4} \int \frac {\exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) \left (8388608+3145728 x-100467072 x^2-37765136 x^3-7081471 x^4-786624 x^5-55300 x^6-2304 x^7-48 x^8\right )}{\left (128+16 x+x^2\right )^3} \, dx\\ &=\frac {1}{4} \int \left (-4 \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right )-48 \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) x^2+\frac {4096 \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) x}{\left (128+16 x+x^2\right )^3}+\frac {16 \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) (-8+1021 x)}{\left (128+16 x+x^2\right )^2}+\frac {1025 \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right )}{128+16 x+x^2}\right ) \, dx\\ &=4 \int \frac {\exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) (-8+1021 x)}{\left (128+16 x+x^2\right )^2} \, dx-12 \int \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) x^2 \, dx+\frac {1025}{4} \int \frac {\exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right )}{128+16 x+x^2} \, dx+1024 \int \frac {\exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) x}{\left (128+16 x+x^2\right )^3} \, dx-\int \exp \left (-\frac {x \left (-65536-16384 x+261121 x^2+65536 x^3+8196 x^4+512 x^5+16 x^6\right )}{4 \left (128+16 x+x^2\right )^2}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 46, normalized size = 1.92 \begin {gather*} e^{32-x-4 x^3-\frac {32 (16+x)}{\left (128+16 x+x^2\right )^2}+\frac {-16368-1025 x}{4 \left (128+16 x+x^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 57, normalized size = 2.38 \begin {gather*} e^{\left (-\frac {16 \, x^{7} + 512 \, x^{6} + 8196 \, x^{5} + 65536 \, x^{4} + 261121 \, x^{3} - 16384 \, x^{2} - 65536 \, x}{4 \, {\left (x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 175, normalized size = 7.29 \begin {gather*} e^{\left (-\frac {4 \, x^{7}}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} - \frac {128 \, x^{6}}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} - \frac {2049 \, x^{5}}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} - \frac {16384 \, x^{4}}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} - \frac {261121 \, x^{3}}{4 \, {\left (x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384\right )}} + \frac {4096 \, x^{2}}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} + \frac {16384 \, x}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 8.26, size = 45, normalized size = 1.88
method | result | size |
risch | \({\mathrm e}^{-\frac {x \left (4 x^{3}+62 x^{2}+481 x -256\right ) \left (4 x^{3}+66 x^{2}+545 x +256\right )}{4 \left (x^{2}+16 x +128\right )^{2}}}\) | \(45\) |
gosper | \({\mathrm e}^{-\frac {x \left (16 x^{6}+512 x^{5}+8196 x^{4}+65536 x^{3}+261121 x^{2}-16384 x -65536\right )}{4 \left (x^{4}+32 x^{3}+512 x^{2}+4096 x +16384\right )}}\) | \(55\) |
norman | \(\frac {x^{4} {\mathrm e}^{\frac {-16 x^{7}-512 x^{6}-8196 x^{5}-65536 x^{4}-261121 x^{3}+16384 x^{2}+65536 x}{4 x^{4}+128 x^{3}+2048 x^{2}+16384 x +65536}}+4096 x \,{\mathrm e}^{\frac {-16 x^{7}-512 x^{6}-8196 x^{5}-65536 x^{4}-261121 x^{3}+16384 x^{2}+65536 x}{4 x^{4}+128 x^{3}+2048 x^{2}+16384 x +65536}}+512 x^{2} {\mathrm e}^{\frac {-16 x^{7}-512 x^{6}-8196 x^{5}-65536 x^{4}-261121 x^{3}+16384 x^{2}+65536 x}{4 x^{4}+128 x^{3}+2048 x^{2}+16384 x +65536}}+32 x^{3} {\mathrm e}^{\frac {-16 x^{7}-512 x^{6}-8196 x^{5}-65536 x^{4}-261121 x^{3}+16384 x^{2}+65536 x}{4 x^{4}+128 x^{3}+2048 x^{2}+16384 x +65536}}+16384 \,{\mathrm e}^{\frac {-16 x^{7}-512 x^{6}-8196 x^{5}-65536 x^{4}-261121 x^{3}+16384 x^{2}+65536 x}{4 x^{4}+128 x^{3}+2048 x^{2}+16384 x +65536}}}{\left (x^{2}+16 x +128\right )^{2}}\) | \(322\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.75, size = 81, normalized size = 3.38 \begin {gather*} e^{\left (-4 \, x^{3} - x - \frac {32 \, x}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} - \frac {1025 \, x}{4 \, {\left (x^{2} + 16 \, x + 128\right )}} - \frac {512}{x^{4} + 32 \, x^{3} + 512 \, x^{2} + 4096 \, x + 16384} - \frac {4092}{x^{2} + 16 \, x + 128} + 32\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.38, size = 183, normalized size = 7.62 \begin {gather*} {\mathrm {e}}^{\frac {16384\,x}{x^4+32\,x^3+512\,x^2+4096\,x+16384}}\,{\mathrm {e}}^{-\frac {4\,x^7}{x^4+32\,x^3+512\,x^2+4096\,x+16384}}\,{\mathrm {e}}^{-\frac {128\,x^6}{x^4+32\,x^3+512\,x^2+4096\,x+16384}}\,{\mathrm {e}}^{-\frac {2049\,x^5}{x^4+32\,x^3+512\,x^2+4096\,x+16384}}\,{\mathrm {e}}^{\frac {4096\,x^2}{x^4+32\,x^3+512\,x^2+4096\,x+16384}}\,{\mathrm {e}}^{-\frac {16384\,x^4}{x^4+32\,x^3+512\,x^2+4096\,x+16384}}\,{\mathrm {e}}^{-\frac {261121\,x^3}{4\,x^4+128\,x^3+2048\,x^2+16384\,x+65536}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 54, normalized size = 2.25 \begin {gather*} e^{\frac {- 16 x^{7} - 512 x^{6} - 8196 x^{5} - 65536 x^{4} - 261121 x^{3} + 16384 x^{2} + 65536 x}{4 x^{4} + 128 x^{3} + 2048 x^{2} + 16384 x + 65536}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________