Optimal. Leaf size=19 \[ x \left (1+\frac {35}{4} \left (3+e^{2 x} x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 11, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 2196, 2176, 2194} \begin {gather*} \frac {35}{4} e^{2 x} x^3+\frac {109 x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (109+e^{2 x} x^2 (105+70 x)\right ) \, dx\\ &=\frac {109 x}{4}+\frac {1}{4} \int e^{2 x} x^2 (105+70 x) \, dx\\ &=\frac {109 x}{4}+\frac {1}{4} \int \left (105 e^{2 x} x^2+70 e^{2 x} x^3\right ) \, dx\\ &=\frac {109 x}{4}+\frac {35}{2} \int e^{2 x} x^3 \, dx+\frac {105}{4} \int e^{2 x} x^2 \, dx\\ &=\frac {109 x}{4}+\frac {105}{8} e^{2 x} x^2+\frac {35}{4} e^{2 x} x^3-\frac {105}{4} \int e^{2 x} x \, dx-\frac {105}{4} \int e^{2 x} x^2 \, dx\\ &=\frac {109 x}{4}-\frac {105}{8} e^{2 x} x+\frac {35}{4} e^{2 x} x^3+\frac {105}{8} \int e^{2 x} \, dx+\frac {105}{4} \int e^{2 x} x \, dx\\ &=\frac {105 e^{2 x}}{16}+\frac {109 x}{4}+\frac {35}{4} e^{2 x} x^3-\frac {105}{8} \int e^{2 x} \, dx\\ &=\frac {109 x}{4}+\frac {35}{4} e^{2 x} x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.95 \begin {gather*} \frac {1}{4} \left (109 x+35 e^{2 x} x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 16, normalized size = 0.84 \begin {gather*} \frac {35}{4} \, x e^{\left (2 \, x + \log \left (x^{2}\right )\right )} + \frac {109}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 13, normalized size = 0.68 \begin {gather*} \frac {35}{4} \, x^{3} e^{\left (2 \, x\right )} + \frac {109}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 14, normalized size = 0.74
method | result | size |
risch | \(\frac {109 x}{4}+\frac {35 \,{\mathrm e}^{2 x} x^{3}}{4}\) | \(14\) |
norman | \(\frac {109 x}{4}+\frac {35 \,{\mathrm e}^{\ln \left (x^{2}\right )+2 x} x}{4}\) | \(17\) |
default | \(\frac {109 x}{4}+\frac {35 \,{\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x} x^{3}}{4}+\frac {35 \,{\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x} x^{2}}{8}-\frac {35 \,{\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x} x}{4}+\frac {35 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) \left (\frac {\left (\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x \right ) {\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x}}{2}-{\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x}\right )}{8}+\frac {35 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x \right ) {\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x}}{8}-\frac {35 \,{\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x} \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )^{2}}{32}-\frac {35 \,{\mathrm e}^{\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x} \left (\ln \left (x^{2}\right )-2 \ln \relax (x )+2 x \right )^{2}}{32}\) | \(193\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 41, normalized size = 2.16 \begin {gather*} \frac {35}{16} \, {\left (4 \, x^{3} - 6 \, x^{2} + 6 \, x - 3\right )} e^{\left (2 \, x\right )} + \frac {105}{16} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} + \frac {109}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 13, normalized size = 0.68 \begin {gather*} \frac {109\,x}{4}+\frac {35\,x^3\,{\mathrm {e}}^{2\,x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.79 \begin {gather*} \frac {35 x^{3} e^{2 x}}{4} + \frac {109 x}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________