3.97.98 \(\int \frac {1024 x+3584 x^2+5376 x^3+4480 x^4+2240 x^5+672 x^6+112 x^7+8 x^8+e^2 (1024+3584 x+5376 x^2+4480 x^3+2240 x^4+672 x^5+112 x^6+8 x^7)+(e^4 (3584+10752 x+13440 x^2+8960 x^3+3360 x^4+672 x^5+56 x^6)+e^2 (3584 x+10752 x^2+13440 x^3+8960 x^4+3360 x^5+672 x^6+56 x^7)) \log (2 x)+(e^6 (5376+13440 x+13440 x^2+6720 x^3+1680 x^4+168 x^5)+e^4 (5376 x+13440 x^2+13440 x^3+6720 x^4+1680 x^5+168 x^6)) \log ^2(2 x)+(e^8 (4480+8960 x+6720 x^2+2240 x^3+280 x^4)+e^6 (4480 x+8960 x^2+6720 x^3+2240 x^4+280 x^5)) \log ^3(2 x)+(e^{10} (2240+3360 x+1680 x^2+280 x^3)+e^8 (2240 x+3360 x^2+1680 x^3+280 x^4)) \log ^4(2 x)+(e^{12} (672+672 x+168 x^2)+e^{10} (672 x+672 x^2+168 x^3)) \log ^5(2 x)+(e^{14} (112+56 x)+e^{12} (112 x+56 x^2)) \log ^6(2 x)+(8 e^{16}+8 e^{14} x) \log ^7(2 x)}{x} \, dx\)

Optimal. Leaf size=15 \[ -1+\left (2+x+e^2 \log (2 x)\right )^8 \]

________________________________________________________________________________________

Rubi [B]  time = 1.95, antiderivative size = 1914, normalized size of antiderivative = 127.60, number of steps used = 115, number of rules used = 12, integrand size = 429, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {14, 80, 43, 2357, 2295, 2301, 2304, 2296, 2302, 30, 2305, 2346}

result too large to display

Antiderivative was successfully verified.

[In]

Int[(1024*x + 3584*x^2 + 5376*x^3 + 4480*x^4 + 2240*x^5 + 672*x^6 + 112*x^7 + 8*x^8 + E^2*(1024 + 3584*x + 537
6*x^2 + 4480*x^3 + 2240*x^4 + 672*x^5 + 112*x^6 + 8*x^7) + (E^4*(3584 + 10752*x + 13440*x^2 + 8960*x^3 + 3360*
x^4 + 672*x^5 + 56*x^6) + E^2*(3584*x + 10752*x^2 + 13440*x^3 + 8960*x^4 + 3360*x^5 + 672*x^6 + 56*x^7))*Log[2
*x] + (E^6*(5376 + 13440*x + 13440*x^2 + 6720*x^3 + 1680*x^4 + 168*x^5) + E^4*(5376*x + 13440*x^2 + 13440*x^3
+ 6720*x^4 + 1680*x^5 + 168*x^6))*Log[2*x]^2 + (E^8*(4480 + 8960*x + 6720*x^2 + 2240*x^3 + 280*x^4) + E^6*(448
0*x + 8960*x^2 + 6720*x^3 + 2240*x^4 + 280*x^5))*Log[2*x]^3 + (E^10*(2240 + 3360*x + 1680*x^2 + 280*x^3) + E^8
*(2240*x + 3360*x^2 + 1680*x^3 + 280*x^4))*Log[2*x]^4 + (E^12*(672 + 672*x + 168*x^2) + E^10*(672*x + 672*x^2
+ 168*x^3))*Log[2*x]^5 + (E^14*(112 + 56*x) + E^12*(112*x + 56*x^2))*Log[2*x]^6 + (8*E^16 + 8*E^14*x)*Log[2*x]
^7)/x,x]

[Out]

3584*E^2*x - 40320*E^14*x - 80640*E^10*(1 + E^2)*x + 40320*E^12*(2 + E^2)*x - 26880*E^6*(1 + 2*E^2)*x - 3584*E
^2*(1 + 3*E^2)*x + 26880*E^8*(2 + 3*E^2)*x + 5376*E^4*(2 + 5*E^2)*x + 2688*E^2*x^2 + 315*E^12*x^2 + 3360*E^4*(
1 + E^2)*x^2 + 1260*E^8*(2 + E^2)*x^2 - 315*E^10*(4 + E^2)*x^2 - 840*E^6*(4 + 3*E^2)*x^2 - 672*E^2*(4 + 5*E^2)
*x^2 + (4480*E^2*x^3)/3 - (2240*E^10*x^3)/81 + (4480*E^4*(2 + E^2)*x^3)/9 - (4480*E^6*(3 + E^2)*x^3)/27 + (224
0*E^8*(6 + E^2)*x^3)/81 - (4480*E^2*(3 + 2*E^2)*x^3)/9 + 560*E^2*x^4 + (105*E^8*x^4)/16 + (105*E^4*(4 + E^2)*x
^4)/2 - (105*E^6*(8 + E^2)*x^4)/16 - 70*E^2*(8 + 3*E^2)*x^4 + (672*E^2*x^5)/5 - (336*E^6*x^5)/125 - (672*E^2*(
5 + E^2)*x^5)/25 + (336*E^4*(10 + E^2)*x^5)/125 + (56*E^2*x^6)/3 + (14*E^4*x^6)/9 - (14*E^2*(12 + E^2)*x^6)/9
+ (2 + x)^8 + 1024*E^2*Log[x] + 40320*E^14*x*Log[2*x] + 80640*E^10*(1 + E^2)*x*Log[2*x] - 40320*E^12*(2 + E^2)
*x*Log[2*x] + 26880*E^6*(1 + 2*E^2)*x*Log[2*x] + 3584*E^2*(1 + 3*E^2)*x*Log[2*x] - 26880*E^8*(2 + 3*E^2)*x*Log
[2*x] - 5376*E^4*(2 + 5*E^2)*x*Log[2*x] - 630*E^12*x^2*Log[2*x] - 6720*E^4*(1 + E^2)*x^2*Log[2*x] - 2520*E^8*(
2 + E^2)*x^2*Log[2*x] + 630*E^10*(4 + E^2)*x^2*Log[2*x] + 1680*E^6*(4 + 3*E^2)*x^2*Log[2*x] + 1344*E^2*(4 + 5*
E^2)*x^2*Log[2*x] + (2240*E^10*x^3*Log[2*x])/27 - (4480*E^4*(2 + E^2)*x^3*Log[2*x])/3 + (4480*E^6*(3 + E^2)*x^
3*Log[2*x])/9 - (2240*E^8*(6 + E^2)*x^3*Log[2*x])/27 + (4480*E^2*(3 + 2*E^2)*x^3*Log[2*x])/3 - (105*E^8*x^4*Lo
g[2*x])/4 - 210*E^4*(4 + E^2)*x^4*Log[2*x] + (105*E^6*(8 + E^2)*x^4*Log[2*x])/4 + 280*E^2*(8 + 3*E^2)*x^4*Log[
2*x] + (336*E^6*x^5*Log[2*x])/25 + (672*E^2*(5 + E^2)*x^5*Log[2*x])/5 - (336*E^4*(10 + E^2)*x^5*Log[2*x])/25 -
 (28*E^4*x^6*Log[2*x])/3 + (28*E^2*(12 + E^2)*x^6*Log[2*x])/3 + 8*E^2*x^7*Log[2*x] + 1792*E^4*Log[2*x]^2 - 201
60*E^14*x*Log[2*x]^2 - 40320*E^10*(1 + E^2)*x*Log[2*x]^2 + 20160*E^12*(2 + E^2)*x*Log[2*x]^2 - 13440*E^6*(1 +
2*E^2)*x*Log[2*x]^2 + 13440*E^8*(2 + 3*E^2)*x*Log[2*x]^2 + 2688*E^4*(2 + 5*E^2)*x*Log[2*x]^2 + 630*E^12*x^2*Lo
g[2*x]^2 + 6720*E^4*(1 + E^2)*x^2*Log[2*x]^2 + 2520*E^8*(2 + E^2)*x^2*Log[2*x]^2 - 630*E^10*(4 + E^2)*x^2*Log[
2*x]^2 - 1680*E^6*(4 + 3*E^2)*x^2*Log[2*x]^2 - (1120*E^10*x^3*Log[2*x]^2)/9 + 2240*E^4*(2 + E^2)*x^3*Log[2*x]^
2 - (2240*E^6*(3 + E^2)*x^3*Log[2*x]^2)/3 + (1120*E^8*(6 + E^2)*x^3*Log[2*x]^2)/9 + (105*E^8*x^4*Log[2*x]^2)/2
 + 420*E^4*(4 + E^2)*x^4*Log[2*x]^2 - (105*E^6*(8 + E^2)*x^4*Log[2*x]^2)/2 - (168*E^6*x^5*Log[2*x]^2)/5 + (168
*E^4*(10 + E^2)*x^5*Log[2*x]^2)/5 + 28*E^4*x^6*Log[2*x]^2 + 1792*E^6*Log[2*x]^3 + 6720*E^14*x*Log[2*x]^3 + 134
40*E^10*(1 + E^2)*x*Log[2*x]^3 - 6720*E^12*(2 + E^2)*x*Log[2*x]^3 + 4480*E^6*(1 + 2*E^2)*x*Log[2*x]^3 - 4480*E
^8*(2 + 3*E^2)*x*Log[2*x]^3 - 420*E^12*x^2*Log[2*x]^3 - 1680*E^8*(2 + E^2)*x^2*Log[2*x]^3 + 420*E^10*(4 + E^2)
*x^2*Log[2*x]^3 + 1120*E^6*(4 + 3*E^2)*x^2*Log[2*x]^3 + (1120*E^10*x^3*Log[2*x]^3)/9 + (2240*E^6*(3 + E^2)*x^3
*Log[2*x]^3)/3 - (1120*E^8*(6 + E^2)*x^3*Log[2*x]^3)/9 - 70*E^8*x^4*Log[2*x]^3 + 70*E^6*(8 + E^2)*x^4*Log[2*x]
^3 + 56*E^6*x^5*Log[2*x]^3 + 1120*E^8*Log[2*x]^4 - 1680*E^14*x*Log[2*x]^4 - 3360*E^10*(1 + E^2)*x*Log[2*x]^4 +
 1680*E^12*(2 + E^2)*x*Log[2*x]^4 + 1120*E^8*(2 + 3*E^2)*x*Log[2*x]^4 + 210*E^12*x^2*Log[2*x]^4 + 840*E^8*(2 +
 E^2)*x^2*Log[2*x]^4 - 210*E^10*(4 + E^2)*x^2*Log[2*x]^4 - (280*E^10*x^3*Log[2*x]^4)/3 + (280*E^8*(6 + E^2)*x^
3*Log[2*x]^4)/3 + 70*E^8*x^4*Log[2*x]^4 + 448*E^10*Log[2*x]^5 + 336*E^14*x*Log[2*x]^5 + 672*E^10*(1 + E^2)*x*L
og[2*x]^5 - 336*E^12*(2 + E^2)*x*Log[2*x]^5 - 84*E^12*x^2*Log[2*x]^5 + 84*E^10*(4 + E^2)*x^2*Log[2*x]^5 + 56*E
^10*x^3*Log[2*x]^5 + 112*E^12*Log[2*x]^6 - 56*E^14*x*Log[2*x]^6 + 56*E^12*(2 + E^2)*x*Log[2*x]^6 + 28*E^12*x^2
*Log[2*x]^6 + 16*E^14*Log[2*x]^7 + 8*E^14*x*Log[2*x]^7 + E^16*Log[2*x]^8

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2346

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Dist[d, Int[((d
 + e*x)^(q - 1)*(a + b*Log[c*x^n])^p)/x, x], x] + Dist[e, Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]

Rule 2357

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 (2+x)^7 \left (e^2+x\right )}{x}+\frac {56 e^2 (2+x)^6 \left (e^2+x\right ) \log (2 x)}{x}+\frac {168 e^4 (2+x)^5 \left (e^2+x\right ) \log ^2(2 x)}{x}+\frac {280 e^6 (2+x)^4 \left (e^2+x\right ) \log ^3(2 x)}{x}+\frac {280 e^8 (2+x)^3 \left (e^2+x\right ) \log ^4(2 x)}{x}+\frac {168 e^{10} (2+x)^2 \left (e^2+x\right ) \log ^5(2 x)}{x}+\frac {56 e^{12} (2+x) \left (e^2+x\right ) \log ^6(2 x)}{x}+\frac {8 e^{14} \left (e^2+x\right ) \log ^7(2 x)}{x}\right ) \, dx\\ &=8 \int \frac {(2+x)^7 \left (e^2+x\right )}{x} \, dx+\left (56 e^2\right ) \int \frac {(2+x)^6 \left (e^2+x\right ) \log (2 x)}{x} \, dx+\left (168 e^4\right ) \int \frac {(2+x)^5 \left (e^2+x\right ) \log ^2(2 x)}{x} \, dx+\left (280 e^6\right ) \int \frac {(2+x)^4 \left (e^2+x\right ) \log ^3(2 x)}{x} \, dx+\left (280 e^8\right ) \int \frac {(2+x)^3 \left (e^2+x\right ) \log ^4(2 x)}{x} \, dx+\left (168 e^{10}\right ) \int \frac {(2+x)^2 \left (e^2+x\right ) \log ^5(2 x)}{x} \, dx+\left (56 e^{12}\right ) \int \frac {(2+x) \left (e^2+x\right ) \log ^6(2 x)}{x} \, dx+\left (8 e^{14}\right ) \int \frac {\left (e^2+x\right ) \log ^7(2 x)}{x} \, dx\\ &=(2+x)^8+\left (8 e^2\right ) \int \frac {(2+x)^7}{x} \, dx+\left (56 e^2\right ) \int \left (64 \left (1+3 e^2\right ) \log (2 x)+\frac {64 e^2 \log (2 x)}{x}+48 \left (4+5 e^2\right ) x \log (2 x)+80 \left (3+2 e^2\right ) x^2 \log (2 x)+20 \left (8+3 e^2\right ) x^3 \log (2 x)+12 \left (5+e^2\right ) x^4 \log (2 x)+\left (12+e^2\right ) x^5 \log (2 x)+x^6 \log (2 x)\right ) \, dx+\left (168 e^4\right ) \int \left (16 \left (2+5 e^2\right ) \log ^2(2 x)+\frac {32 e^2 \log ^2(2 x)}{x}+80 \left (1+e^2\right ) x \log ^2(2 x)+40 \left (2+e^2\right ) x^2 \log ^2(2 x)+10 \left (4+e^2\right ) x^3 \log ^2(2 x)+\left (10+e^2\right ) x^4 \log ^2(2 x)+x^5 \log ^2(2 x)\right ) \, dx+\left (280 e^6\right ) \int \left (16 \left (1+2 e^2\right ) \log ^3(2 x)+\frac {16 e^2 \log ^3(2 x)}{x}+8 \left (4+3 e^2\right ) x \log ^3(2 x)+8 \left (3+e^2\right ) x^2 \log ^3(2 x)+\left (8+e^2\right ) x^3 \log ^3(2 x)+x^4 \log ^3(2 x)\right ) \, dx+\left (280 e^8\right ) \int \left (4 \left (2+3 e^2\right ) \log ^4(2 x)+\frac {8 e^2 \log ^4(2 x)}{x}+6 \left (2+e^2\right ) x \log ^4(2 x)+\left (6+e^2\right ) x^2 \log ^4(2 x)+x^3 \log ^4(2 x)\right ) \, dx+\left (168 e^{10}\right ) \int \left (4 \left (1+e^2\right ) \log ^5(2 x)+\frac {4 e^2 \log ^5(2 x)}{x}+\left (4+e^2\right ) x \log ^5(2 x)+x^2 \log ^5(2 x)\right ) \, dx+\left (56 e^{12}\right ) \int \left (\left (2+e^2\right ) \log ^6(2 x)+\frac {2 e^2 \log ^6(2 x)}{x}+x \log ^6(2 x)\right ) \, dx+\left (8 e^{14}\right ) \int \log ^7(2 x) \, dx+\left (8 e^{16}\right ) \int \frac {\log ^7(2 x)}{x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 13, normalized size = 0.87 \begin {gather*} \left (2+x+e^2 \log (2 x)\right )^8 \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1024*x + 3584*x^2 + 5376*x^3 + 4480*x^4 + 2240*x^5 + 672*x^6 + 112*x^7 + 8*x^8 + E^2*(1024 + 3584*x
 + 5376*x^2 + 4480*x^3 + 2240*x^4 + 672*x^5 + 112*x^6 + 8*x^7) + (E^4*(3584 + 10752*x + 13440*x^2 + 8960*x^3 +
 3360*x^4 + 672*x^5 + 56*x^6) + E^2*(3584*x + 10752*x^2 + 13440*x^3 + 8960*x^4 + 3360*x^5 + 672*x^6 + 56*x^7))
*Log[2*x] + (E^6*(5376 + 13440*x + 13440*x^2 + 6720*x^3 + 1680*x^4 + 168*x^5) + E^4*(5376*x + 13440*x^2 + 1344
0*x^3 + 6720*x^4 + 1680*x^5 + 168*x^6))*Log[2*x]^2 + (E^8*(4480 + 8960*x + 6720*x^2 + 2240*x^3 + 280*x^4) + E^
6*(4480*x + 8960*x^2 + 6720*x^3 + 2240*x^4 + 280*x^5))*Log[2*x]^3 + (E^10*(2240 + 3360*x + 1680*x^2 + 280*x^3)
 + E^8*(2240*x + 3360*x^2 + 1680*x^3 + 280*x^4))*Log[2*x]^4 + (E^12*(672 + 672*x + 168*x^2) + E^10*(672*x + 67
2*x^2 + 168*x^3))*Log[2*x]^5 + (E^14*(112 + 56*x) + E^12*(112*x + 56*x^2))*Log[2*x]^6 + (8*E^16 + 8*E^14*x)*Lo
g[2*x]^7)/x,x]

[Out]

(2 + x + E^2*Log[2*x])^8

________________________________________________________________________________________

fricas [B]  time = 0.77, size = 240, normalized size = 16.00 \begin {gather*} 8 \, {\left (x + 2\right )} e^{14} \log \left (2 \, x\right )^{7} + e^{16} \log \left (2 \, x\right )^{8} + x^{8} + 28 \, {\left (x^{2} + 4 \, x + 4\right )} e^{12} \log \left (2 \, x\right )^{6} + 16 \, x^{7} + 56 \, {\left (x^{3} + 6 \, x^{2} + 12 \, x + 8\right )} e^{10} \log \left (2 \, x\right )^{5} + 112 \, x^{6} + 70 \, {\left (x^{4} + 8 \, x^{3} + 24 \, x^{2} + 32 \, x + 16\right )} e^{8} \log \left (2 \, x\right )^{4} + 448 \, x^{5} + 56 \, {\left (x^{5} + 10 \, x^{4} + 40 \, x^{3} + 80 \, x^{2} + 80 \, x + 32\right )} e^{6} \log \left (2 \, x\right )^{3} + 1120 \, x^{4} + 28 \, {\left (x^{6} + 12 \, x^{5} + 60 \, x^{4} + 160 \, x^{3} + 240 \, x^{2} + 192 \, x + 64\right )} e^{4} \log \left (2 \, x\right )^{2} + 1792 \, x^{3} + 8 \, {\left (x^{7} + 14 \, x^{6} + 84 \, x^{5} + 280 \, x^{4} + 560 \, x^{3} + 672 \, x^{2} + 448 \, x + 128\right )} e^{2} \log \left (2 \, x\right ) + 1792 \, x^{2} + 1024 \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(2)^8+8*x*exp(2)^7)*log(2*x)^7+((56*x+112)*exp(2)^7+(56*x^2+112*x)*exp(2)^6)*log(2*x)^6+((168
*x^2+672*x+672)*exp(2)^6+(168*x^3+672*x^2+672*x)*exp(2)^5)*log(2*x)^5+((280*x^3+1680*x^2+3360*x+2240)*exp(2)^5
+(280*x^4+1680*x^3+3360*x^2+2240*x)*exp(2)^4)*log(2*x)^4+((280*x^4+2240*x^3+6720*x^2+8960*x+4480)*exp(2)^4+(28
0*x^5+2240*x^4+6720*x^3+8960*x^2+4480*x)*exp(2)^3)*log(2*x)^3+((168*x^5+1680*x^4+6720*x^3+13440*x^2+13440*x+53
76)*exp(2)^3+(168*x^6+1680*x^5+6720*x^4+13440*x^3+13440*x^2+5376*x)*exp(2)^2)*log(2*x)^2+((56*x^6+672*x^5+3360
*x^4+8960*x^3+13440*x^2+10752*x+3584)*exp(2)^2+(56*x^7+672*x^6+3360*x^5+8960*x^4+13440*x^3+10752*x^2+3584*x)*e
xp(2))*log(2*x)+(8*x^7+112*x^6+672*x^5+2240*x^4+4480*x^3+5376*x^2+3584*x+1024)*exp(2)+8*x^8+112*x^7+672*x^6+22
40*x^5+4480*x^4+5376*x^3+3584*x^2+1024*x)/x,x, algorithm="fricas")

[Out]

8*(x + 2)*e^14*log(2*x)^7 + e^16*log(2*x)^8 + x^8 + 28*(x^2 + 4*x + 4)*e^12*log(2*x)^6 + 16*x^7 + 56*(x^3 + 6*
x^2 + 12*x + 8)*e^10*log(2*x)^5 + 112*x^6 + 70*(x^4 + 8*x^3 + 24*x^2 + 32*x + 16)*e^8*log(2*x)^4 + 448*x^5 + 5
6*(x^5 + 10*x^4 + 40*x^3 + 80*x^2 + 80*x + 32)*e^6*log(2*x)^3 + 1120*x^4 + 28*(x^6 + 12*x^5 + 60*x^4 + 160*x^3
 + 240*x^2 + 192*x + 64)*e^4*log(2*x)^2 + 1792*x^3 + 8*(x^7 + 14*x^6 + 84*x^5 + 280*x^4 + 560*x^3 + 672*x^2 +
448*x + 128)*e^2*log(2*x) + 1792*x^2 + 1024*x

________________________________________________________________________________________

giac [B]  time = 0.23, size = 448, normalized size = 29.87 \begin {gather*} 8 \, x^{7} e^{2} \log \left (2 \, x\right ) + 28 \, x^{6} e^{4} \log \left (2 \, x\right )^{2} + 56 \, x^{5} e^{6} \log \left (2 \, x\right )^{3} + 70 \, x^{4} e^{8} \log \left (2 \, x\right )^{4} + 56 \, x^{3} e^{10} \log \left (2 \, x\right )^{5} + 28 \, x^{2} e^{12} \log \left (2 \, x\right )^{6} + 8 \, x e^{14} \log \left (2 \, x\right )^{7} + e^{16} \log \left (2 \, x\right )^{8} + x^{8} + 112 \, x^{6} e^{2} \log \left (2 \, x\right ) + 336 \, x^{5} e^{4} \log \left (2 \, x\right )^{2} + 560 \, x^{4} e^{6} \log \left (2 \, x\right )^{3} + 560 \, x^{3} e^{8} \log \left (2 \, x\right )^{4} + 336 \, x^{2} e^{10} \log \left (2 \, x\right )^{5} + 112 \, x e^{12} \log \left (2 \, x\right )^{6} + 16 \, e^{14} \log \left (2 \, x\right )^{7} + 16 \, x^{7} + 672 \, x^{5} e^{2} \log \left (2 \, x\right ) + 1680 \, x^{4} e^{4} \log \left (2 \, x\right )^{2} + 2240 \, x^{3} e^{6} \log \left (2 \, x\right )^{3} + 1680 \, x^{2} e^{8} \log \left (2 \, x\right )^{4} + 672 \, x e^{10} \log \left (2 \, x\right )^{5} + 112 \, e^{12} \log \left (2 \, x\right )^{6} + 112 \, x^{6} + 2240 \, x^{4} e^{2} \log \left (2 \, x\right ) + 4480 \, x^{3} e^{4} \log \left (2 \, x\right )^{2} + 4480 \, x^{2} e^{6} \log \left (2 \, x\right )^{3} + 2240 \, x e^{8} \log \left (2 \, x\right )^{4} + 448 \, e^{10} \log \left (2 \, x\right )^{5} + 448 \, x^{5} + 4480 \, x^{3} e^{2} \log \left (2 \, x\right ) + 6720 \, x^{2} e^{4} \log \left (2 \, x\right )^{2} + 4480 \, x e^{6} \log \left (2 \, x\right )^{3} + 1120 \, e^{8} \log \left (2 \, x\right )^{4} + 1120 \, x^{4} + 5376 \, x^{2} e^{2} \log \left (2 \, x\right ) + 5376 \, x e^{4} \log \left (2 \, x\right )^{2} + 1792 \, e^{6} \log \left (2 \, x\right )^{3} + 1792 \, x^{3} + 3584 \, x e^{2} \log \left (2 \, x\right ) + 1792 \, e^{4} \log \left (2 \, x\right )^{2} + 1792 \, x^{2} + 1024 \, e^{2} \log \relax (x) + 1024 \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(2)^8+8*x*exp(2)^7)*log(2*x)^7+((56*x+112)*exp(2)^7+(56*x^2+112*x)*exp(2)^6)*log(2*x)^6+((168
*x^2+672*x+672)*exp(2)^6+(168*x^3+672*x^2+672*x)*exp(2)^5)*log(2*x)^5+((280*x^3+1680*x^2+3360*x+2240)*exp(2)^5
+(280*x^4+1680*x^3+3360*x^2+2240*x)*exp(2)^4)*log(2*x)^4+((280*x^4+2240*x^3+6720*x^2+8960*x+4480)*exp(2)^4+(28
0*x^5+2240*x^4+6720*x^3+8960*x^2+4480*x)*exp(2)^3)*log(2*x)^3+((168*x^5+1680*x^4+6720*x^3+13440*x^2+13440*x+53
76)*exp(2)^3+(168*x^6+1680*x^5+6720*x^4+13440*x^3+13440*x^2+5376*x)*exp(2)^2)*log(2*x)^2+((56*x^6+672*x^5+3360
*x^4+8960*x^3+13440*x^2+10752*x+3584)*exp(2)^2+(56*x^7+672*x^6+3360*x^5+8960*x^4+13440*x^3+10752*x^2+3584*x)*e
xp(2))*log(2*x)+(8*x^7+112*x^6+672*x^5+2240*x^4+4480*x^3+5376*x^2+3584*x+1024)*exp(2)+8*x^8+112*x^7+672*x^6+22
40*x^5+4480*x^4+5376*x^3+3584*x^2+1024*x)/x,x, algorithm="giac")

[Out]

8*x^7*e^2*log(2*x) + 28*x^6*e^4*log(2*x)^2 + 56*x^5*e^6*log(2*x)^3 + 70*x^4*e^8*log(2*x)^4 + 56*x^3*e^10*log(2
*x)^5 + 28*x^2*e^12*log(2*x)^6 + 8*x*e^14*log(2*x)^7 + e^16*log(2*x)^8 + x^8 + 112*x^6*e^2*log(2*x) + 336*x^5*
e^4*log(2*x)^2 + 560*x^4*e^6*log(2*x)^3 + 560*x^3*e^8*log(2*x)^4 + 336*x^2*e^10*log(2*x)^5 + 112*x*e^12*log(2*
x)^6 + 16*e^14*log(2*x)^7 + 16*x^7 + 672*x^5*e^2*log(2*x) + 1680*x^4*e^4*log(2*x)^2 + 2240*x^3*e^6*log(2*x)^3
+ 1680*x^2*e^8*log(2*x)^4 + 672*x*e^10*log(2*x)^5 + 112*e^12*log(2*x)^6 + 112*x^6 + 2240*x^4*e^2*log(2*x) + 44
80*x^3*e^4*log(2*x)^2 + 4480*x^2*e^6*log(2*x)^3 + 2240*x*e^8*log(2*x)^4 + 448*e^10*log(2*x)^5 + 448*x^5 + 4480
*x^3*e^2*log(2*x) + 6720*x^2*e^4*log(2*x)^2 + 4480*x*e^6*log(2*x)^3 + 1120*e^8*log(2*x)^4 + 1120*x^4 + 5376*x^
2*e^2*log(2*x) + 5376*x*e^4*log(2*x)^2 + 1792*e^6*log(2*x)^3 + 1792*x^3 + 3584*x*e^2*log(2*x) + 1792*e^4*log(2
*x)^2 + 1792*x^2 + 1024*e^2*log(x) + 1024*x

________________________________________________________________________________________

maple [B]  time = 0.10, size = 313, normalized size = 20.87




method result size



risch \({\mathrm e}^{16} \ln \left (2 x \right )^{8}+\left (8 x \,{\mathrm e}^{14}+16 \,{\mathrm e}^{14}\right ) \ln \left (2 x \right )^{7}+\left (28 x^{2} {\mathrm e}^{12}+112 x \,{\mathrm e}^{12}+112 \,{\mathrm e}^{12}\right ) \ln \left (2 x \right )^{6}+\left (56 x^{3} {\mathrm e}^{10}+336 x^{2} {\mathrm e}^{10}+672 x \,{\mathrm e}^{10}+448 \,{\mathrm e}^{10}\right ) \ln \left (2 x \right )^{5}+\left (70 x^{4} {\mathrm e}^{8}+560 x^{3} {\mathrm e}^{8}+1680 x^{2} {\mathrm e}^{8}+2240 x \,{\mathrm e}^{8}+1120 \,{\mathrm e}^{8}\right ) \ln \left (2 x \right )^{4}+\left (56 \,{\mathrm e}^{6} x^{5}+560 x^{4} {\mathrm e}^{6}+2240 x^{3} {\mathrm e}^{6}+4480 x^{2} {\mathrm e}^{6}+4480 x \,{\mathrm e}^{6}+1792 \,{\mathrm e}^{6}\right ) \ln \left (2 x \right )^{3}+\left (28 x^{6} {\mathrm e}^{4}+336 x^{5} {\mathrm e}^{4}+1680 x^{4} {\mathrm e}^{4}+4480 x^{3} {\mathrm e}^{4}+6720 x^{2} {\mathrm e}^{4}+5376 x \,{\mathrm e}^{4}+1792 \,{\mathrm e}^{4}\right ) \ln \left (2 x \right )^{2}+\left (8 \,{\mathrm e}^{2} x^{7}+112 x^{6} {\mathrm e}^{2}+672 \,{\mathrm e}^{2} x^{5}+2240 x^{4} {\mathrm e}^{2}+4480 x^{3} {\mathrm e}^{2}+5376 x^{2} {\mathrm e}^{2}+3584 \,{\mathrm e}^{2} x \right ) \ln \left (2 x \right )+x^{8}+16 x^{7}+112 x^{6}+448 x^{5}+1120 x^{4}+1792 x^{3}+1792 x^{2}+1024 x +1024 \,{\mathrm e}^{2} \ln \relax (x )\) \(313\)
derivativedivides \(\text {Expression too large to display}\) \(2064\)
default \(\text {Expression too large to display}\) \(2064\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*exp(2)^8+8*x*exp(2)^7)*ln(2*x)^7+((56*x+112)*exp(2)^7+(56*x^2+112*x)*exp(2)^6)*ln(2*x)^6+((168*x^2+672
*x+672)*exp(2)^6+(168*x^3+672*x^2+672*x)*exp(2)^5)*ln(2*x)^5+((280*x^3+1680*x^2+3360*x+2240)*exp(2)^5+(280*x^4
+1680*x^3+3360*x^2+2240*x)*exp(2)^4)*ln(2*x)^4+((280*x^4+2240*x^3+6720*x^2+8960*x+4480)*exp(2)^4+(280*x^5+2240
*x^4+6720*x^3+8960*x^2+4480*x)*exp(2)^3)*ln(2*x)^3+((168*x^5+1680*x^4+6720*x^3+13440*x^2+13440*x+5376)*exp(2)^
3+(168*x^6+1680*x^5+6720*x^4+13440*x^3+13440*x^2+5376*x)*exp(2)^2)*ln(2*x)^2+((56*x^6+672*x^5+3360*x^4+8960*x^
3+13440*x^2+10752*x+3584)*exp(2)^2+(56*x^7+672*x^6+3360*x^5+8960*x^4+13440*x^3+10752*x^2+3584*x)*exp(2))*ln(2*
x)+(8*x^7+112*x^6+672*x^5+2240*x^4+4480*x^3+5376*x^2+3584*x+1024)*exp(2)+8*x^8+112*x^7+672*x^6+2240*x^5+4480*x
^4+5376*x^3+3584*x^2+1024*x)/x,x,method=_RETURNVERBOSE)

[Out]

exp(16)*ln(2*x)^8+(8*x*exp(14)+16*exp(14))*ln(2*x)^7+(28*x^2*exp(12)+112*x*exp(12)+112*exp(12))*ln(2*x)^6+(56*
x^3*exp(10)+336*x^2*exp(10)+672*x*exp(10)+448*exp(10))*ln(2*x)^5+(70*x^4*exp(8)+560*x^3*exp(8)+1680*x^2*exp(8)
+2240*x*exp(8)+1120*exp(8))*ln(2*x)^4+(56*exp(6)*x^5+560*x^4*exp(6)+2240*x^3*exp(6)+4480*x^2*exp(6)+4480*x*exp
(6)+1792*exp(6))*ln(2*x)^3+(28*x^6*exp(4)+336*x^5*exp(4)+1680*x^4*exp(4)+4480*x^3*exp(4)+6720*x^2*exp(4)+5376*
x*exp(4)+1792*exp(4))*ln(2*x)^2+(8*exp(2)*x^7+112*x^6*exp(2)+672*exp(2)*x^5+2240*x^4*exp(2)+4480*x^3*exp(2)+53
76*x^2*exp(2)+3584*exp(2)*x)*ln(2*x)+x^8+16*x^7+112*x^6+448*x^5+1120*x^4+1792*x^3+1792*x^2+1024*x+1024*exp(2)*
ln(x)

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 1620, normalized size = 108.00 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(2)^8+8*x*exp(2)^7)*log(2*x)^7+((56*x+112)*exp(2)^7+(56*x^2+112*x)*exp(2)^6)*log(2*x)^6+((168
*x^2+672*x+672)*exp(2)^6+(168*x^3+672*x^2+672*x)*exp(2)^5)*log(2*x)^5+((280*x^3+1680*x^2+3360*x+2240)*exp(2)^5
+(280*x^4+1680*x^3+3360*x^2+2240*x)*exp(2)^4)*log(2*x)^4+((280*x^4+2240*x^3+6720*x^2+8960*x+4480)*exp(2)^4+(28
0*x^5+2240*x^4+6720*x^3+8960*x^2+4480*x)*exp(2)^3)*log(2*x)^3+((168*x^5+1680*x^4+6720*x^3+13440*x^2+13440*x+53
76)*exp(2)^3+(168*x^6+1680*x^5+6720*x^4+13440*x^3+13440*x^2+5376*x)*exp(2)^2)*log(2*x)^2+((56*x^6+672*x^5+3360
*x^4+8960*x^3+13440*x^2+10752*x+3584)*exp(2)^2+(56*x^7+672*x^6+3360*x^5+8960*x^4+13440*x^3+10752*x^2+3584*x)*e
xp(2))*log(2*x)+(8*x^7+112*x^6+672*x^5+2240*x^4+4480*x^3+5376*x^2+3584*x+1024)*exp(2)+8*x^8+112*x^7+672*x^6+22
40*x^5+4480*x^4+5376*x^3+3584*x^2+1024*x)/x,x, algorithm="maxima")

[Out]

e^16*log(2*x)^8 + x^8 + 14/9*(18*log(2*x)^2 - 6*log(2*x) + 1)*x^6*e^4 + 8/7*x^7*e^2 + 16*e^14*log(2*x)^7 + 16*
x^7 + 56/125*(125*log(2*x)^3 - 75*log(2*x)^2 + 30*log(2*x) - 6)*x^5*e^6 + 168/125*(25*log(2*x)^2 - 10*log(2*x)
 + 2)*x^5*e^6 + 336/25*(25*log(2*x)^2 - 10*log(2*x) + 2)*x^5*e^4 + 56/3*x^6*e^2 + 112*e^12*log(2*x)^6 + 112*x^
6 + 35/16*(32*log(2*x)^4 - 32*log(2*x)^3 + 24*log(2*x)^2 - 12*log(2*x) + 3)*x^4*e^8 + 35/16*(32*log(2*x)^3 - 2
4*log(2*x)^2 + 12*log(2*x) - 3)*x^4*e^8 + 35/2*(32*log(2*x)^3 - 24*log(2*x)^2 + 12*log(2*x) - 3)*x^4*e^6 + 105
/2*(8*log(2*x)^2 - 4*log(2*x) + 1)*x^4*e^6 + 210*(8*log(2*x)^2 - 4*log(2*x) + 1)*x^4*e^4 + 672/5*x^5*e^2 + 448
*e^10*log(2*x)^5 + 448*x^5 + 56/81*(81*log(2*x)^5 - 135*log(2*x)^4 + 180*log(2*x)^3 - 180*log(2*x)^2 + 120*log
(2*x) - 40)*x^3*e^10 + 280/81*(27*log(2*x)^4 - 36*log(2*x)^3 + 36*log(2*x)^2 - 24*log(2*x) + 8)*x^3*e^10 + 560
/27*(27*log(2*x)^4 - 36*log(2*x)^3 + 36*log(2*x)^2 - 24*log(2*x) + 8)*x^3*e^8 + 2240/27*(9*log(2*x)^3 - 9*log(
2*x)^2 + 6*log(2*x) - 2)*x^3*e^8 + 2240/9*(9*log(2*x)^3 - 9*log(2*x)^2 + 6*log(2*x) - 2)*x^3*e^6 + 2240/9*(9*l
og(2*x)^2 - 6*log(2*x) + 2)*x^3*e^6 + 4480/9*(9*log(2*x)^2 - 6*log(2*x) + 2)*x^3*e^4 + 560*x^4*e^2 + 1120*e^8*
log(2*x)^4 + 1120*x^4 + 7*(4*log(2*x)^6 - 12*log(2*x)^5 + 30*log(2*x)^4 - 60*log(2*x)^3 + 90*log(2*x)^2 - 90*l
og(2*x) + 45)*x^2*e^12 + 21*(4*log(2*x)^5 - 10*log(2*x)^4 + 20*log(2*x)^3 - 30*log(2*x)^2 + 30*log(2*x) - 15)*
x^2*e^12 + 84*(4*log(2*x)^5 - 10*log(2*x)^4 + 20*log(2*x)^3 - 30*log(2*x)^2 + 30*log(2*x) - 15)*x^2*e^10 + 420
*(2*log(2*x)^4 - 4*log(2*x)^3 + 6*log(2*x)^2 - 6*log(2*x) + 3)*x^2*e^10 + 840*(2*log(2*x)^4 - 4*log(2*x)^3 + 6
*log(2*x)^2 - 6*log(2*x) + 3)*x^2*e^8 + 840*(4*log(2*x)^3 - 6*log(2*x)^2 + 6*log(2*x) - 3)*x^2*e^8 + 1120*(4*l
og(2*x)^3 - 6*log(2*x)^2 + 6*log(2*x) - 3)*x^2*e^6 + 3360*(2*log(2*x)^2 - 2*log(2*x) + 1)*x^2*e^6 + 3360*(2*lo
g(2*x)^2 - 2*log(2*x) + 1)*x^2*e^4 + 4480/3*x^3*e^2 + 1792*e^6*log(2*x)^3 + 1792*x^3 + 8*(log(2*x)^7 - 7*log(2
*x)^6 + 42*log(2*x)^5 - 210*log(2*x)^4 + 840*log(2*x)^3 - 2520*log(2*x)^2 + 5040*log(2*x) - 5040)*x*e^14 + 56*
(log(2*x)^6 - 6*log(2*x)^5 + 30*log(2*x)^4 - 120*log(2*x)^3 + 360*log(2*x)^2 - 720*log(2*x) + 720)*x*e^14 + 11
2*(log(2*x)^6 - 6*log(2*x)^5 + 30*log(2*x)^4 - 120*log(2*x)^3 + 360*log(2*x)^2 - 720*log(2*x) + 720)*x*e^12 +
672*(log(2*x)^5 - 5*log(2*x)^4 + 20*log(2*x)^3 - 60*log(2*x)^2 + 120*log(2*x) - 120)*x*e^12 + 672*(log(2*x)^5
- 5*log(2*x)^4 + 20*log(2*x)^3 - 60*log(2*x)^2 + 120*log(2*x) - 120)*x*e^10 + 3360*(log(2*x)^4 - 4*log(2*x)^3
+ 12*log(2*x)^2 - 24*log(2*x) + 24)*x*e^10 + 2240*(log(2*x)^4 - 4*log(2*x)^3 + 12*log(2*x)^2 - 24*log(2*x) + 2
4)*x*e^8 + 8960*(log(2*x)^3 - 3*log(2*x)^2 + 6*log(2*x) - 6)*x*e^8 + 4480*(log(2*x)^3 - 3*log(2*x)^2 + 6*log(2
*x) - 6)*x*e^6 + 13440*(log(2*x)^2 - 2*log(2*x) + 2)*x*e^6 + 5376*(log(2*x)^2 - 2*log(2*x) + 2)*x*e^4 + 2688*x
^2*e^2 + 1792*e^4*log(2*x)^2 + 1792*x^2 + 14/9*(6*x^6*log(2*x) - x^6)*e^4 + 672/25*(5*x^5*log(2*x) - x^5)*e^4
+ 210*(4*x^4*log(2*x) - x^4)*e^4 + 8960/9*(3*x^3*log(2*x) - x^3)*e^4 + 3360*(2*x^2*log(2*x) - x^2)*e^4 + 10752
*(x*log(2*x) - x)*e^4 + 8/7*(7*x^7*log(2*x) - x^7)*e^2 + 56/3*(6*x^6*log(2*x) - x^6)*e^2 + 672/5*(5*x^5*log(2*
x) - x^5)*e^2 + 560*(4*x^4*log(2*x) - x^4)*e^2 + 4480/3*(3*x^3*log(2*x) - x^3)*e^2 + 2688*(2*x^2*log(2*x) - x^
2)*e^2 + 3584*(x*log(2*x) - x)*e^2 + 3584*x*e^2 + 1024*e^2*log(x) + 1024*x

________________________________________________________________________________________

mupad [B]  time = 10.15, size = 448, normalized size = 29.87 \begin {gather*} 1024\,x+1792\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+1792\,{\ln \left (2\,x\right )}^3\,{\mathrm {e}}^6+1120\,{\ln \left (2\,x\right )}^4\,{\mathrm {e}}^8+448\,{\ln \left (2\,x\right )}^5\,{\mathrm {e}}^{10}+112\,{\ln \left (2\,x\right )}^6\,{\mathrm {e}}^{12}+16\,{\ln \left (2\,x\right )}^7\,{\mathrm {e}}^{14}+{\ln \left (2\,x\right )}^8\,{\mathrm {e}}^{16}+1024\,{\mathrm {e}}^2\,\ln \relax (x)+1792\,x^2+1792\,x^3+1120\,x^4+448\,x^5+112\,x^6+16\,x^7+x^8+6720\,x^2\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+4480\,x^3\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+1680\,x^4\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+4480\,x^2\,{\ln \left (2\,x\right )}^3\,{\mathrm {e}}^6+336\,x^5\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+2240\,x^3\,{\ln \left (2\,x\right )}^3\,{\mathrm {e}}^6+28\,x^6\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+560\,x^4\,{\ln \left (2\,x\right )}^3\,{\mathrm {e}}^6+1680\,x^2\,{\ln \left (2\,x\right )}^4\,{\mathrm {e}}^8+56\,x^5\,{\ln \left (2\,x\right )}^3\,{\mathrm {e}}^6+560\,x^3\,{\ln \left (2\,x\right )}^4\,{\mathrm {e}}^8+70\,x^4\,{\ln \left (2\,x\right )}^4\,{\mathrm {e}}^8+336\,x^2\,{\ln \left (2\,x\right )}^5\,{\mathrm {e}}^{10}+56\,x^3\,{\ln \left (2\,x\right )}^5\,{\mathrm {e}}^{10}+28\,x^2\,{\ln \left (2\,x\right )}^6\,{\mathrm {e}}^{12}+3584\,x\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+5376\,x^2\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+4480\,x^3\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+5376\,x\,{\ln \left (2\,x\right )}^2\,{\mathrm {e}}^4+2240\,x^4\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+672\,x^5\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+112\,x^6\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+4480\,x\,{\ln \left (2\,x\right )}^3\,{\mathrm {e}}^6+8\,x^7\,\ln \left (2\,x\right )\,{\mathrm {e}}^2+2240\,x\,{\ln \left (2\,x\right )}^4\,{\mathrm {e}}^8+672\,x\,{\ln \left (2\,x\right )}^5\,{\mathrm {e}}^{10}+112\,x\,{\ln \left (2\,x\right )}^6\,{\mathrm {e}}^{12}+8\,x\,{\ln \left (2\,x\right )}^7\,{\mathrm {e}}^{14} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1024*x + exp(2)*(3584*x + 5376*x^2 + 4480*x^3 + 2240*x^4 + 672*x^5 + 112*x^6 + 8*x^7 + 1024) + log(2*x)^2
*(exp(4)*(5376*x + 13440*x^2 + 13440*x^3 + 6720*x^4 + 1680*x^5 + 168*x^6) + exp(6)*(13440*x + 13440*x^2 + 6720
*x^3 + 1680*x^4 + 168*x^5 + 5376)) + log(2*x)*(exp(4)*(10752*x + 13440*x^2 + 8960*x^3 + 3360*x^4 + 672*x^5 + 5
6*x^6 + 3584) + exp(2)*(3584*x + 10752*x^2 + 13440*x^3 + 8960*x^4 + 3360*x^5 + 672*x^6 + 56*x^7)) + log(2*x)^7
*(8*exp(16) + 8*x*exp(14)) + log(2*x)^4*(exp(10)*(3360*x + 1680*x^2 + 280*x^3 + 2240) + exp(8)*(2240*x + 3360*
x^2 + 1680*x^3 + 280*x^4)) + log(2*x)^6*(exp(12)*(112*x + 56*x^2) + exp(14)*(56*x + 112)) + 3584*x^2 + 5376*x^
3 + 4480*x^4 + 2240*x^5 + 672*x^6 + 112*x^7 + 8*x^8 + log(2*x)^3*(exp(8)*(8960*x + 6720*x^2 + 2240*x^3 + 280*x
^4 + 4480) + exp(6)*(4480*x + 8960*x^2 + 6720*x^3 + 2240*x^4 + 280*x^5)) + log(2*x)^5*(exp(12)*(672*x + 168*x^
2 + 672) + exp(10)*(672*x + 672*x^2 + 168*x^3)))/x,x)

[Out]

1024*x + 1792*log(2*x)^2*exp(4) + 1792*log(2*x)^3*exp(6) + 1120*log(2*x)^4*exp(8) + 448*log(2*x)^5*exp(10) + 1
12*log(2*x)^6*exp(12) + 16*log(2*x)^7*exp(14) + log(2*x)^8*exp(16) + 1024*exp(2)*log(x) + 1792*x^2 + 1792*x^3
+ 1120*x^4 + 448*x^5 + 112*x^6 + 16*x^7 + x^8 + 6720*x^2*log(2*x)^2*exp(4) + 4480*x^3*log(2*x)^2*exp(4) + 1680
*x^4*log(2*x)^2*exp(4) + 4480*x^2*log(2*x)^3*exp(6) + 336*x^5*log(2*x)^2*exp(4) + 2240*x^3*log(2*x)^3*exp(6) +
 28*x^6*log(2*x)^2*exp(4) + 560*x^4*log(2*x)^3*exp(6) + 1680*x^2*log(2*x)^4*exp(8) + 56*x^5*log(2*x)^3*exp(6)
+ 560*x^3*log(2*x)^4*exp(8) + 70*x^4*log(2*x)^4*exp(8) + 336*x^2*log(2*x)^5*exp(10) + 56*x^3*log(2*x)^5*exp(10
) + 28*x^2*log(2*x)^6*exp(12) + 3584*x*log(2*x)*exp(2) + 5376*x^2*log(2*x)*exp(2) + 4480*x^3*log(2*x)*exp(2) +
 5376*x*log(2*x)^2*exp(4) + 2240*x^4*log(2*x)*exp(2) + 672*x^5*log(2*x)*exp(2) + 112*x^6*log(2*x)*exp(2) + 448
0*x*log(2*x)^3*exp(6) + 8*x^7*log(2*x)*exp(2) + 2240*x*log(2*x)^4*exp(8) + 672*x*log(2*x)^5*exp(10) + 112*x*lo
g(2*x)^6*exp(12) + 8*x*log(2*x)^7*exp(14)

________________________________________________________________________________________

sympy [B]  time = 1.02, size = 357, normalized size = 23.80 \begin {gather*} x^{8} + 16 x^{7} + 112 x^{6} + 448 x^{5} + 1120 x^{4} + 1792 x^{3} + 1792 x^{2} + 1024 x + \left (8 x e^{14} + 16 e^{14}\right ) \log {\left (2 x \right )}^{7} + \left (28 x^{2} e^{12} + 112 x e^{12} + 112 e^{12}\right ) \log {\left (2 x \right )}^{6} + \left (56 x^{3} e^{10} + 336 x^{2} e^{10} + 672 x e^{10} + 448 e^{10}\right ) \log {\left (2 x \right )}^{5} + \left (70 x^{4} e^{8} + 560 x^{3} e^{8} + 1680 x^{2} e^{8} + 2240 x e^{8} + 1120 e^{8}\right ) \log {\left (2 x \right )}^{4} + \left (56 x^{5} e^{6} + 560 x^{4} e^{6} + 2240 x^{3} e^{6} + 4480 x^{2} e^{6} + 4480 x e^{6} + 1792 e^{6}\right ) \log {\left (2 x \right )}^{3} + \left (28 x^{6} e^{4} + 336 x^{5} e^{4} + 1680 x^{4} e^{4} + 4480 x^{3} e^{4} + 6720 x^{2} e^{4} + 5376 x e^{4} + 1792 e^{4}\right ) \log {\left (2 x \right )}^{2} + \left (8 x^{7} e^{2} + 112 x^{6} e^{2} + 672 x^{5} e^{2} + 2240 x^{4} e^{2} + 4480 x^{3} e^{2} + 5376 x^{2} e^{2} + 3584 x e^{2}\right ) \log {\left (2 x \right )} + 1024 e^{2} \log {\relax (x )} + e^{16} \log {\left (2 x \right )}^{8} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*exp(2)**8+8*x*exp(2)**7)*ln(2*x)**7+((56*x+112)*exp(2)**7+(56*x**2+112*x)*exp(2)**6)*ln(2*x)**6+
((168*x**2+672*x+672)*exp(2)**6+(168*x**3+672*x**2+672*x)*exp(2)**5)*ln(2*x)**5+((280*x**3+1680*x**2+3360*x+22
40)*exp(2)**5+(280*x**4+1680*x**3+3360*x**2+2240*x)*exp(2)**4)*ln(2*x)**4+((280*x**4+2240*x**3+6720*x**2+8960*
x+4480)*exp(2)**4+(280*x**5+2240*x**4+6720*x**3+8960*x**2+4480*x)*exp(2)**3)*ln(2*x)**3+((168*x**5+1680*x**4+6
720*x**3+13440*x**2+13440*x+5376)*exp(2)**3+(168*x**6+1680*x**5+6720*x**4+13440*x**3+13440*x**2+5376*x)*exp(2)
**2)*ln(2*x)**2+((56*x**6+672*x**5+3360*x**4+8960*x**3+13440*x**2+10752*x+3584)*exp(2)**2+(56*x**7+672*x**6+33
60*x**5+8960*x**4+13440*x**3+10752*x**2+3584*x)*exp(2))*ln(2*x)+(8*x**7+112*x**6+672*x**5+2240*x**4+4480*x**3+
5376*x**2+3584*x+1024)*exp(2)+8*x**8+112*x**7+672*x**6+2240*x**5+4480*x**4+5376*x**3+3584*x**2+1024*x)/x,x)

[Out]

x**8 + 16*x**7 + 112*x**6 + 448*x**5 + 1120*x**4 + 1792*x**3 + 1792*x**2 + 1024*x + (8*x*exp(14) + 16*exp(14))
*log(2*x)**7 + (28*x**2*exp(12) + 112*x*exp(12) + 112*exp(12))*log(2*x)**6 + (56*x**3*exp(10) + 336*x**2*exp(1
0) + 672*x*exp(10) + 448*exp(10))*log(2*x)**5 + (70*x**4*exp(8) + 560*x**3*exp(8) + 1680*x**2*exp(8) + 2240*x*
exp(8) + 1120*exp(8))*log(2*x)**4 + (56*x**5*exp(6) + 560*x**4*exp(6) + 2240*x**3*exp(6) + 4480*x**2*exp(6) +
4480*x*exp(6) + 1792*exp(6))*log(2*x)**3 + (28*x**6*exp(4) + 336*x**5*exp(4) + 1680*x**4*exp(4) + 4480*x**3*ex
p(4) + 6720*x**2*exp(4) + 5376*x*exp(4) + 1792*exp(4))*log(2*x)**2 + (8*x**7*exp(2) + 112*x**6*exp(2) + 672*x*
*5*exp(2) + 2240*x**4*exp(2) + 4480*x**3*exp(2) + 5376*x**2*exp(2) + 3584*x*exp(2))*log(2*x) + 1024*exp(2)*log
(x) + exp(16)*log(2*x)**8

________________________________________________________________________________________