Optimal. Leaf size=25 \[ e^{\frac {x}{\frac {x}{27-x}+\frac {4 \log (2)}{x^3}}} x \]
________________________________________________________________________________________
Rubi [F] time = 3.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-27 x^4+x^5}{-x^4+(-108+4 x) \log (2)}\right ) \left (x^8-x^9+\left (11880 x^4-872 x^5+16 x^6\right ) \log (2)+\left (11664-864 x+16 x^2\right ) \log ^2(2)\right )}{x^8+\left (216 x^4-8 x^5\right ) \log (2)+\left (11664-864 x+16 x^2\right ) \log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) \left (x^8-x^9+\left (11880 x^4-872 x^5+16 x^6\right ) \log (2)+\left (11664-864 x+16 x^2\right ) \log ^2(2)\right )}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2} \, dx\\ &=\int \left (\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right )-\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x+\frac {48 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) (-36+x) (-27+x)^2 \log ^2(2)}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2}+\frac {8 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) \left (1458-81 x+x^2\right ) \log (2)}{x^4+108 \log (2)-4 x \log (2)}\right ) \, dx\\ &=(8 \log (2)) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) \left (1458-81 x+x^2\right )}{x^4+108 \log (2)-4 x \log (2)} \, dx+\left (48 \log ^2(2)\right ) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) (-36+x) (-27+x)^2}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2} \, dx+\int \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) \, dx-\int \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x \, dx\\ &=(8 \log (2)) \int \left (\frac {1458 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right )}{x^4+108 \log (2)-4 x \log (2)}-\frac {81 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x}{x^4+108 \log (2)-4 x \log (2)}+\frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x^2}{x^4+108 \log (2)-4 x \log (2)}\right ) \, dx+\left (48 \log ^2(2)\right ) \int \left (-\frac {26244 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right )}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2}+\frac {2673 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2}-\frac {90 \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x^2}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2}+\frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x^3}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2}\right ) \, dx+\int \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) \, dx-\int \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x \, dx\\ &=(8 \log (2)) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x^2}{x^4+108 \log (2)-4 x \log (2)} \, dx-(648 \log (2)) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x}{x^4+108 \log (2)-4 x \log (2)} \, dx+(11664 \log (2)) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right )}{x^4+108 \log (2)-4 x \log (2)} \, dx+\left (48 \log ^2(2)\right ) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x^3}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2} \, dx-\left (4320 \log ^2(2)\right ) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x^2}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2} \, dx+\left (128304 \log ^2(2)\right ) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2} \, dx-\left (1259712 \log ^2(2)\right ) \int \frac {\exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right )}{\left (x^4+108 \log (2)-4 x \log (2)\right )^2} \, dx+\int \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) \, dx-\int \exp \left (\frac {(-27+x) x^4}{-x^4-108 \log (2)+4 x \log (2)}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 33, normalized size = 1.32 \begin {gather*} 2^{-\frac {4 (-27+x)^2}{x^4+108 \log (2)-4 x \log (2)}} e^{27-x} x \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 27, normalized size = 1.08 \begin {gather*} x e^{\left (-\frac {x^{5} - 27 \, x^{4}}{x^{4} - 4 \, {\left (x - 27\right )} \log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 29, normalized size = 1.16 \begin {gather*} x e^{\left (-\frac {x^{5} - 27 \, x^{4}}{x^{4} - 4 \, x \log \relax (2) + 108 \, \log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 28, normalized size = 1.12
method | result | size |
gosper | \(x \,{\mathrm e}^{\frac {x^{4} \left (x -27\right )}{-x^{4}+4 x \ln \relax (2)-108 \ln \relax (2)}}\) | \(28\) |
risch | \(x \,{\mathrm e}^{\frac {x^{4} \left (x -27\right )}{-x^{4}+4 x \ln \relax (2)-108 \ln \relax (2)}}\) | \(28\) |
norman | \(\frac {-x^{5} {\mathrm e}^{\frac {x^{5}-27 x^{4}}{\left (4 x -108\right ) \ln \relax (2)-x^{4}}}-108 x \ln \relax (2) {\mathrm e}^{\frac {x^{5}-27 x^{4}}{\left (4 x -108\right ) \ln \relax (2)-x^{4}}}+4 x^{2} \ln \relax (2) {\mathrm e}^{\frac {x^{5}-27 x^{4}}{\left (4 x -108\right ) \ln \relax (2)-x^{4}}}}{-x^{4}+4 x \ln \relax (2)-108 \ln \relax (2)}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 69, normalized size = 2.76 \begin {gather*} x e^{\left (-\frac {4 \, x^{2} \log \relax (2)}{x^{4} - 4 \, x \log \relax (2) + 108 \, \log \relax (2)} - x + \frac {216 \, x \log \relax (2)}{x^{4} - 4 \, x \log \relax (2) + 108 \, \log \relax (2)} - \frac {2916 \, \log \relax (2)}{x^{4} - 4 \, x \log \relax (2) + 108 \, \log \relax (2)} + 27\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.39, size = 30, normalized size = 1.20 \begin {gather*} x\,{\mathrm {e}}^{\frac {27\,x^4-x^5}{x^4-4\,\ln \relax (2)\,x+108\,\ln \relax (2)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 67.52, size = 22, normalized size = 0.88 \begin {gather*} x e^{\frac {x^{5} - 27 x^{4}}{- x^{4} + \left (4 x - 108\right ) \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________