Optimal. Leaf size=37 \[ -x+\frac {x \left (e^{-x} (4-x)+x^2\right )}{\log \left (4+\left (1-e^{x^2}\right )^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 51.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x^2} \left (-96 x^2+24 x^3-24 e^x x^4\right )+e^{4 x^2} \left (-32 x^2+8 x^3-8 e^x x^4\right )+e^{x^2} \left (32 x^2-8 x^3+8 e^x x^4\right )+e^{3 x^2} \left (96 x^2-24 x^3+24 e^x x^4\right )+\left (20-30 x+5 x^2+15 e^x x^2+e^{x^2} \left (-16+24 x-4 x^2-12 e^x x^2\right )+e^{3 x^2} \left (-16+24 x-4 x^2-12 e^x x^2\right )+e^{4 x^2} \left (4-6 x+x^2+3 e^x x^2\right )+e^{2 x^2} \left (24-36 x+6 x^2+18 e^x x^2\right )\right ) \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )+\left (-5 e^x+4 e^{x+x^2}-6 e^{x+2 x^2}+4 e^{x+3 x^2}-e^{x+4 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}{\left (5 e^x-4 e^{x+x^2}+6 e^{x+2 x^2}-4 e^{x+3 x^2}+e^{x+4 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (e^{2 x^2} \left (-96 x^2+24 x^3-24 e^x x^4\right )+e^{4 x^2} \left (-32 x^2+8 x^3-8 e^x x^4\right )+e^{x^2} \left (32 x^2-8 x^3+8 e^x x^4\right )+e^{3 x^2} \left (96 x^2-24 x^3+24 e^x x^4\right )+\left (20-30 x+5 x^2+15 e^x x^2+e^{x^2} \left (-16+24 x-4 x^2-12 e^x x^2\right )+e^{3 x^2} \left (-16+24 x-4 x^2-12 e^x x^2\right )+e^{4 x^2} \left (4-6 x+x^2+3 e^x x^2\right )+e^{2 x^2} \left (24-36 x+6 x^2+18 e^x x^2\right )\right ) \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )+\left (-5 e^x+4 e^{x+x^2}-6 e^{x+2 x^2}+4 e^{x+3 x^2}-e^{x+4 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )\right )}{\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx\\ &=\int \frac {e^{-x} \left (8 e^{x^2} x^2 \left (4-x+e^x x^2\right )-24 e^{2 x^2} x^2 \left (4-x+e^x x^2\right )+24 e^{3 x^2} x^2 \left (4-x+e^x x^2\right )-8 e^{4 x^2} x^2 \left (4-x+e^x x^2\right )+\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right ) \left (4-6 x+\left (1+3 e^x\right ) x^2\right ) \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )-e^x \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )\right )}{\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx\\ &=\int \left (\frac {4 e^{-x} x^2 \left (4-x+e^x x^2\right )}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {4 e^{-x} \left (-5+2 e^{x^2}\right ) x^2 \left (4-x+e^x x^2\right )}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {e^{-x} \left (32 x^2-8 x^3+8 e^x x^4-4 \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )+6 x \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )-x^2 \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )-3 e^x x^2 \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )+e^x \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )\right )}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx\\ &=4 \int \frac {e^{-x} x^2 \left (4-x+e^x x^2\right )}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-4 \int \frac {e^{-x} \left (-5+2 e^{x^2}\right ) x^2 \left (4-x+e^x x^2\right )}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-\int \frac {e^{-x} \left (32 x^2-8 x^3+8 e^x x^4-4 \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )+6 x \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )-x^2 \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )-3 e^x x^2 \log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )+e^x \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )\right )}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx\\ &=4 \int \left (\frac {4 e^{-x} x^2}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {e^{-x} x^3}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {x^4}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx-4 \int \left (-\frac {20 e^{-x} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {8 e^{-x+x^2} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {5 e^{-x} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {2 e^{-x+x^2} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {5 x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {2 e^{x^2} x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx-\int \left (1+\frac {8 e^{-x} x^2 \left (4-x+e^x x^2\right )}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {e^{-x} \left (4-6 x+\left (1+3 e^x\right ) x^2\right )}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx\\ &=-x-4 \int \frac {e^{-x} x^3}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+4 \int \frac {x^4}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+8 \int \frac {e^{-x+x^2} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {e^{x^2} x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {e^{-x} x^2 \left (4-x+e^x x^2\right )}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+16 \int \frac {e^{-x} x^2}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-20 \int \frac {e^{-x} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+20 \int \frac {x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-32 \int \frac {e^{-x+x^2} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+80 \int \frac {e^{-x} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+\int \frac {e^{-x} \left (4-6 x+\left (1+3 e^x\right ) x^2\right )}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx\\ &=-x-4 \int \frac {e^{-x} x^3}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+4 \int \frac {x^4}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \left (-\frac {e^{-x} (-4+x) x^2}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {x^4}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx+8 \int \frac {e^{-x+x^2} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {e^{x^2} x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+16 \int \frac {e^{-x} x^2}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-20 \int \frac {e^{-x} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+20 \int \frac {x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-32 \int \frac {e^{-x+x^2} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+80 \int \frac {e^{-x} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+\int \left (\frac {3 x^2}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {e^{-x} \left (4-6 x+x^2\right )}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx\\ &=-x+3 \int \frac {x^2}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-4 \int \frac {e^{-x} x^3}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+4 \int \frac {x^4}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+8 \int \frac {e^{-x} (-4+x) x^2}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+8 \int \frac {e^{-x+x^2} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {x^4}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {e^{x^2} x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+16 \int \frac {e^{-x} x^2}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-20 \int \frac {e^{-x} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+20 \int \frac {x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-32 \int \frac {e^{-x+x^2} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+80 \int \frac {e^{-x} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+\int \frac {e^{-x} \left (4-6 x+x^2\right )}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx\\ &=-x+3 \int \frac {x^2}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-4 \int \frac {e^{-x} x^3}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+4 \int \frac {x^4}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+8 \int \left (-\frac {4 e^{-x} x^2}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {e^{-x} x^3}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx+8 \int \frac {e^{-x+x^2} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {x^4}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {e^{x^2} x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+16 \int \frac {e^{-x} x^2}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-20 \int \frac {e^{-x} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+20 \int \frac {x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-32 \int \frac {e^{-x+x^2} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+80 \int \frac {e^{-x} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+\int \left (\frac {4 e^{-x}}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}-\frac {6 e^{-x} x}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}+\frac {e^{-x} x^2}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \, dx\\ &=-x+3 \int \frac {x^2}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-4 \int \frac {e^{-x} x^3}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+4 \int \frac {x^4}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+4 \int \frac {e^{-x}}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-6 \int \frac {e^{-x} x}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+8 \int \frac {e^{-x} x^3}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+8 \int \frac {e^{-x+x^2} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {x^4}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-8 \int \frac {e^{x^2} x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+16 \int \frac {e^{-x} x^2}{\left (1+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-20 \int \frac {e^{-x} x^3}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+20 \int \frac {x^4}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-32 \int \frac {e^{-x} x^2}{\log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx-32 \int \frac {e^{-x+x^2} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+80 \int \frac {e^{-x} x^2}{\left (5-4 e^{x^2}+e^{2 x^2}\right ) \log ^2\left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx+\int \frac {e^{-x} x^2}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 59, normalized size = 1.59 \begin {gather*} x \left (-1+\frac {e^{-x} \left (4-x+e^x x^2\right )}{\log \left (5-4 e^{x^2}+6 e^{2 x^2}-4 e^{3 x^2}+e^{4 x^2}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 202, normalized size = 5.46 \begin {gather*} \frac {{\left (x^{3} e^{\left (12 \, x^{2} + 4 \, x\right )} - x e^{\left (12 \, x^{2} + 4 \, x\right )} \log \left ({\left (e^{\left (16 \, x^{2} + 4 \, x\right )} - 4 \, e^{\left (15 \, x^{2} + 4 \, x\right )} + 6 \, e^{\left (14 \, x^{2} + 4 \, x\right )} - 4 \, e^{\left (13 \, x^{2} + 4 \, x\right )} + 5 \, e^{\left (12 \, x^{2} + 4 \, x\right )}\right )} e^{\left (-12 \, x^{2} - 4 \, x\right )}\right ) - {\left (x^{2} - 4 \, x\right )} e^{\left (12 \, x^{2} + 3 \, x\right )}\right )} e^{\left (-12 \, x^{2} - 4 \, x\right )}}{\log \left ({\left (e^{\left (16 \, x^{2} + 4 \, x\right )} - 4 \, e^{\left (15 \, x^{2} + 4 \, x\right )} + 6 \, e^{\left (14 \, x^{2} + 4 \, x\right )} - 4 \, e^{\left (13 \, x^{2} + 4 \, x\right )} + 5 \, e^{\left (12 \, x^{2} + 4 \, x\right )}\right )} e^{\left (-12 \, x^{2} - 4 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.91, size = 83, normalized size = 2.24 \begin {gather*} \frac {x^{3} e^{x} - x e^{x} \log \left (e^{\left (2 \, x^{2}\right )} - 4 \, e^{\left (x^{2}\right )} + 5\right ) - x e^{x} \log \left (e^{\left (2 \, x^{2}\right )} + 1\right ) - x^{2} + 4 \, x}{e^{x} \log \left (e^{\left (2 \, x^{2}\right )} - 4 \, e^{\left (x^{2}\right )} + 5\right ) + e^{x} \log \left (e^{\left (2 \, x^{2}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 55, normalized size = 1.49
method | result | size |
risch | \(-x +\frac {\left ({\mathrm e}^{x} x^{2}-x +4\right ) x \,{\mathrm e}^{-x}}{\ln \left ({\mathrm e}^{4 x^{2}}-4 \,{\mathrm e}^{3 x^{2}}+6 \,{\mathrm e}^{2 x^{2}}-4 \,{\mathrm e}^{x^{2}}+5\right )}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 83, normalized size = 2.24 \begin {gather*} \frac {x^{3} e^{x} - x e^{x} \log \left (e^{\left (2 \, x^{2}\right )} - 4 \, e^{\left (x^{2}\right )} + 5\right ) - x e^{x} \log \left (e^{\left (2 \, x^{2}\right )} + 1\right ) - x^{2} + 4 \, x}{e^{x} \log \left (e^{\left (2 \, x^{2}\right )} - 4 \, e^{\left (x^{2}\right )} + 5\right ) + e^{x} \log \left (e^{\left (2 \, x^{2}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.72, size = 343, normalized size = 9.27 \begin {gather*} \frac {x\,{\mathrm {e}}^{-x}\,\left (x^2\,{\mathrm {e}}^x-x+4\right )-\frac {{\mathrm {e}}^{-x^2-x}\,\ln \left (6\,{\mathrm {e}}^{2\,x^2}-4\,{\mathrm {e}}^{x^2}-4\,{\mathrm {e}}^{3\,x^2}+{\mathrm {e}}^{4\,x^2}+5\right )\,\left (3\,x^2\,{\mathrm {e}}^x-6\,x+x^2+4\right )\,\left (6\,{\mathrm {e}}^{2\,x^2}-4\,{\mathrm {e}}^{x^2}-4\,{\mathrm {e}}^{3\,x^2}+{\mathrm {e}}^{4\,x^2}+5\right )}{8\,x\,{\left ({\mathrm {e}}^{x^2}-1\right )}^3}}{\ln \left (6\,{\mathrm {e}}^{2\,x^2}-4\,{\mathrm {e}}^{x^2}-4\,{\mathrm {e}}^{3\,x^2}+{\mathrm {e}}^{4\,x^2}+5\right )}-\frac {5\,x}{8}-\frac {{\mathrm {e}}^{-x^2-x}\,\left (\frac {15\,x^2\,{\mathrm {e}}^x}{8}-\frac {15\,x}{4}+\frac {5\,x^2}{8}+\frac {5}{2}\right )}{x}+\frac {{\mathrm {e}}^{-x}\,\left (\frac {x^2}{8}-\frac {3\,x}{4}+\frac {1}{2}\right )}{x}+\frac {{\mathrm {e}}^{-x}\,\left (3\,x^4\,{\mathrm {e}}^x+4\,x^2-6\,x^3+x^4\right )}{2\,x^3\,\left (3\,{\mathrm {e}}^{x^2}-3\,{\mathrm {e}}^{2\,x^2}+{\mathrm {e}}^{3\,x^2}-1\right )}-\frac {{\mathrm {e}}^{-x}\,\left (3\,x^4\,{\mathrm {e}}^x+4\,x^2-6\,x^3+x^4\right )}{2\,x^3\,\left ({\mathrm {e}}^{2\,x^2}-2\,{\mathrm {e}}^{x^2}+1\right )}+\frac {{\mathrm {e}}^{-x}\,\left (3\,x^4\,{\mathrm {e}}^x+4\,x^2-6\,x^3+x^4\right )}{2\,x^3\,\left ({\mathrm {e}}^{x^2}-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.91, size = 51, normalized size = 1.38 \begin {gather*} - x + \frac {\left (x^{3} e^{x} - x^{2} + 4 x\right ) e^{- x}}{\log {\left (e^{4 x^{2}} - 4 e^{3 x^{2}} + 6 e^{2 x^{2}} - 4 e^{x^{2}} + 5 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________