Optimal. Leaf size=26 \[ 4+x-\frac {x}{5+\left (-2-e^{2+25 x^2}\right ) \log (9)} \]
________________________________________________________________________________________
Rubi [F] time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20-18 \log (9)+4 \log ^2(9)+e^{4+50 x^2} \log ^2(9)+e^{25 x^2} \left (e^2 \left (-9-50 x^2\right ) \log (9)+4 e^2 \log ^2(9)\right )}{25-20 \log (9)+4 \log ^2(9)+e^{4+50 x^2} \log ^2(9)+e^{25 x^2} \left (-10 e^2 \log (9)+4 e^2 \log ^2(9)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4+50 x^2} \log ^2(9)+e^{2+25 x^2} \log (9) \left (-9-50 x^2+4 \log (9)\right )+20 \left (1+\frac {1}{10} \log (9) (-9+\log (81))\right )}{\left (5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)\right )^2} \, dx\\ &=\int \left (1+\frac {-1+50 x^2}{5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)}+\frac {2 \left (8 \log ^2(3)-8 \log (3) \log (9)-25 x^2 (5-\log (81))+\log (9) \log (81)\right )}{\left (5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)\right )^2}\right ) \, dx\\ &=x+2 \int \frac {8 \log ^2(3)-8 \log (3) \log (9)-25 x^2 (5-\log (81))+\log (9) \log (81)}{\left (5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)\right )^2} \, dx+\int \frac {-1+50 x^2}{5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)} \, dx\\ &=x+2 \int -\frac {25 x^2 (5-\log (81))}{\left (5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)\right )^2} \, dx+\int \left (\frac {50 x^2}{5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)}+\frac {1}{-5 \left (1-\frac {4 \log (3)}{5}\right )+e^{2+25 x^2} \log (9)}\right ) \, dx\\ &=x+50 \int \frac {x^2}{5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)} \, dx-(50 (5-\log (81))) \int \frac {x^2}{\left (5 \left (1-\frac {4 \log (3)}{5}\right )-e^{2+25 x^2} \log (9)\right )^2} \, dx+\int \frac {1}{-5 \left (1-\frac {4 \log (3)}{5}\right )+e^{2+25 x^2} \log (9)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 36, normalized size = 1.38 \begin {gather*} \frac {x \left (-4+e^{2+25 x^2} \log (9)+\log (81)\right )}{-5+e^{2+25 x^2} \log (9)+\log (81)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 43, normalized size = 1.65 \begin {gather*} \frac {2 \, {\left (x e^{\left (25 \, x^{2} + 2\right )} \log \relax (3) + 2 \, x \log \relax (3) - 2 \, x\right )}}{2 \, e^{\left (25 \, x^{2} + 2\right )} \log \relax (3) + 4 \, \log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 43, normalized size = 1.65 \begin {gather*} \frac {2 \, {\left (x e^{\left (25 \, x^{2} + 2\right )} \log \relax (3) + 2 \, x \log \relax (3) - 2 \, x\right )}}{2 \, e^{\left (25 \, x^{2} + 2\right )} \log \relax (3) + 4 \, \log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 25, normalized size = 0.96
method | result | size |
risch | \(x +\frac {x}{2 \ln \relax (3) {\mathrm e}^{25 x^{2}+2}+4 \ln \relax (3)-5}\) | \(25\) |
norman | \(\frac {\left (4 \ln \relax (3)-4\right ) x +2 x \,{\mathrm e}^{2} \ln \relax (3) {\mathrm e}^{25 x^{2}}}{2 \,{\mathrm e}^{2} \ln \relax (3) {\mathrm e}^{25 x^{2}}+4 \ln \relax (3)-5}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 42, normalized size = 1.62 \begin {gather*} \frac {2 \, {\left (x e^{\left (25 \, x^{2} + 2\right )} \log \relax (3) + 2 \, x {\left (\log \relax (3) - 1\right )}\right )}}{2 \, e^{\left (25 \, x^{2} + 2\right )} \log \relax (3) + 4 \, \log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.67, size = 24, normalized size = 0.92 \begin {gather*} x+\frac {x}{4\,\ln \relax (3)+2\,{\mathrm {e}}^{25\,x^2+2}\,\ln \relax (3)-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 24, normalized size = 0.92 \begin {gather*} x + \frac {x}{2 e^{2} e^{25 x^{2}} \log {\relax (3 )} - 5 + 4 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________