Optimal. Leaf size=19 \[ x^4 \left (1+e^2 \log \left (e^3 (2+e+x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 37, normalized size of antiderivative = 1.95, number of steps used = 9, number of rules used = 5, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {6, 6742, 77, 2395, 43} \begin {gather*} \frac {1}{4} \left (4+e^2\right ) x^4-\frac {e^2 x^4}{4}+e^2 x^4 (\log (x+e+2)+3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 43
Rule 77
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(8+4 e) x^3+4 x^4+e^2 x^4+e^2 \left (8 x^3+4 e x^3+4 x^4\right ) \log \left (e^3 (2+e+x)\right )}{2+e+x} \, dx\\ &=\int \frac {(8+4 e) x^3+\left (4+e^2\right ) x^4+e^2 \left (8 x^3+4 e x^3+4 x^4\right ) \log \left (e^3 (2+e+x)\right )}{2+e+x} \, dx\\ &=\int \left (\frac {x^3 \left (4 (2+e)+\left (4+e^2\right ) x\right )}{2+e+x}+4 e^2 x^3 (3+\log (2+e+x))\right ) \, dx\\ &=\left (4 e^2\right ) \int x^3 (3+\log (2+e+x)) \, dx+\int \frac {x^3 \left (4 (2+e)+\left (4+e^2\right ) x\right )}{2+e+x} \, dx\\ &=e^2 x^4 (3+\log (2+e+x))-e^2 \int \frac {x^4}{2+e+x} \, dx+\int \left (-e^2 (2+e)^3+e^2 (2+e)^2 x-e^2 (2+e) x^2+\left (4+e^2\right ) x^3+\frac {e^2 (2+e)^4}{2+e+x}\right ) \, dx\\ &=-e^2 (2+e)^3 x+\frac {1}{2} e^2 (2+e)^2 x^2-\frac {1}{3} e^2 (2+e) x^3+\frac {1}{4} \left (4+e^2\right ) x^4+e^2 (2+e)^4 \log (2+e+x)+e^2 x^4 (3+\log (2+e+x))-e^2 \int \left (-(2+e)^3+(2+e)^2 x-(2+e) x^2+x^3+\frac {(2+e)^4}{2+e+x}\right ) \, dx\\ &=-\frac {1}{4} e^2 x^4+\frac {1}{4} \left (4+e^2\right ) x^4+e^2 x^4 (3+\log (2+e+x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 1.26 \begin {gather*} x^4+3 e^2 x^4+e^2 x^4 \log (2+e+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 20, normalized size = 1.05 \begin {gather*} x^{4} e^{2} \log \left ({\left (x + 2\right )} e^{3} + e^{4}\right ) + x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 22, normalized size = 1.16 \begin {gather*} x^{4} e^{2} \log \left (x e^{3} + e^{4} + 2 \, e^{3}\right ) + x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 1.05
method | result | size |
norman | \(x^{4}+x^{4} {\mathrm e}^{2} \ln \left (\left (2+x +{\mathrm e}\right ) {\mathrm e}^{3}\right )\) | \(20\) |
risch | \(x^{4}+x^{4} {\mathrm e}^{2} \ln \left (\left (2+x +{\mathrm e}\right ) {\mathrm e}^{3}\right )\) | \(20\) |
derivativedivides | \({\mathrm e}^{-3} \left (-32 \left ({\mathrm e}+2\right ) {\mathrm e}^{3}-32 x \,{\mathrm e}^{3}+12 \,{\mathrm e}^{-3} {\mathrm e} \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}+{\mathrm e}^{3} {\mathrm e}^{4} {\mathrm e}^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-\frac {4 \,{\mathrm e}^{-6} {\mathrm e} \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{3}+12 \,{\mathrm e}^{-3} \left ({\mathrm e}^{2}\right )^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{2}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}}{4}\right )+48 \,{\mathrm e}^{-3} {\mathrm e} \,{\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{2}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}}{4}\right )-12 \,{\mathrm e}^{-6} {\mathrm e} \,{\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{3}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{9}\right )+8 \left ({\mathrm e}^{3}\right )^{2} {\mathrm e}^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+24 \,{\mathrm e}^{3} \left ({\mathrm e}^{2}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+3 \,{\mathrm e}^{-3} \left ({\mathrm e}^{2}\right )^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}+32 \,{\mathrm e}^{2} {\mathrm e} \,{\mathrm e}^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-48 \,{\mathrm e} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-56 \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-32 \,{\mathrm e}^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-4 \,{\mathrm e}^{3} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+24 \,{\mathrm e}^{-3} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}-8 \,{\mathrm e}^{-6} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}+{\mathrm e}^{-9} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4}+18 \,{\mathrm e}^{-3} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}+24 \,{\mathrm e}^{-3} {\mathrm e} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}-4 \,{\mathrm e}^{-6} {\mathrm e} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}-\frac {8 \,{\mathrm e}^{-6} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{3}-24 \left ({\mathrm e}^{2}\right )^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+48 \,{\mathrm e}^{-3} {\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{2}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}}{4}\right )-24 \,{\mathrm e}^{-6} {\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{3}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{9}\right )-4 \,{\mathrm e}^{3} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+4 \,{\mathrm e}^{-9} {\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{4}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4}}{16}\right )-4 \,{\mathrm e}^{3} {\mathrm e}^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-24 \left ({\mathrm e}^{2}\right )^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+\frac {{\mathrm e}^{-9} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4}}{4}-48 \,{\mathrm e} \,{\mathrm e}^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+16 \,{\mathrm e}^{2} {\mathrm e}^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-48 \,{\mathrm e} \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )\right )\) | \(1039\) |
default | \({\mathrm e}^{-3} \left (-32 \left ({\mathrm e}+2\right ) {\mathrm e}^{3}-32 x \,{\mathrm e}^{3}+12 \,{\mathrm e}^{-3} {\mathrm e} \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}+{\mathrm e}^{3} {\mathrm e}^{4} {\mathrm e}^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-\frac {4 \,{\mathrm e}^{-6} {\mathrm e} \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{3}+12 \,{\mathrm e}^{-3} \left ({\mathrm e}^{2}\right )^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{2}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}}{4}\right )+48 \,{\mathrm e}^{-3} {\mathrm e} \,{\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{2}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}}{4}\right )-12 \,{\mathrm e}^{-6} {\mathrm e} \,{\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{3}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{9}\right )+8 \left ({\mathrm e}^{3}\right )^{2} {\mathrm e}^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+24 \,{\mathrm e}^{3} \left ({\mathrm e}^{2}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+3 \,{\mathrm e}^{-3} \left ({\mathrm e}^{2}\right )^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}+32 \,{\mathrm e}^{2} {\mathrm e} \,{\mathrm e}^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-48 \,{\mathrm e} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-56 \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-32 \,{\mathrm e}^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-4 \,{\mathrm e}^{3} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+24 \,{\mathrm e}^{-3} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}-8 \,{\mathrm e}^{-6} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}+{\mathrm e}^{-9} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4}+18 \,{\mathrm e}^{-3} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}+24 \,{\mathrm e}^{-3} {\mathrm e} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}-4 \,{\mathrm e}^{-6} {\mathrm e} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}-\frac {8 \,{\mathrm e}^{-6} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{3}-24 \left ({\mathrm e}^{2}\right )^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+48 \,{\mathrm e}^{-3} {\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{2}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{2}}{4}\right )-24 \,{\mathrm e}^{-6} {\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{3}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{3}}{9}\right )-4 \,{\mathrm e}^{3} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+4 \,{\mathrm e}^{-9} {\mathrm e}^{2} \left (\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )}{4}-\frac {\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4}}{16}\right )-4 \,{\mathrm e}^{3} {\mathrm e}^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-24 \left ({\mathrm e}^{2}\right )^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+\frac {{\mathrm e}^{-9} {\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )^{4}}{4}-48 \,{\mathrm e} \,{\mathrm e}^{2} \left (\left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right ) \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-x \,{\mathrm e}^{3}-\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )+16 \,{\mathrm e}^{2} {\mathrm e}^{3} \ln \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )-48 \,{\mathrm e} \,{\mathrm e}^{2} \left (x \,{\mathrm e}^{3}+\left ({\mathrm e}+2\right ) {\mathrm e}^{3}\right )\right )\) | \(1039\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 679, normalized size = 35.74 \begin {gather*} x^{4} - \frac {4}{3} \, x^{3} {\left (e + 2\right )} + \frac {8}{3} \, x^{3} + 2 \, x^{2} {\left (e^{2} + 4 \, e + 4\right )} - 4 \, x^{2} {\left (e + 2\right )} + \frac {2}{3} \, {\left (2 \, x^{3} - 3 \, x^{2} {\left (e + 2\right )} + 6 \, x {\left (e^{2} + 4 \, e + 4\right )} - 6 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )\right )} e^{3} \log \left (x e^{3} + e^{4} + 2 \, e^{3}\right ) + \frac {1}{3} \, {\left (3 \, x^{4} - 4 \, x^{3} {\left (e + 2\right )} + 6 \, x^{2} {\left (e^{2} + 4 \, e + 4\right )} - 12 \, x {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} + 12 \, {\left (e^{4} + 8 \, e^{3} + 24 \, e^{2} + 32 \, e + 16\right )} \log \left (x + e + 2\right )\right )} e^{2} \log \left (x e^{3} + e^{4} + 2 \, e^{3}\right ) + \frac {4}{3} \, {\left (2 \, x^{3} - 3 \, x^{2} {\left (e + 2\right )} + 6 \, x {\left (e^{2} + 4 \, e + 4\right )} - 6 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )\right )} e^{2} \log \left (x e^{3} + e^{4} + 2 \, e^{3}\right ) - 4 \, x {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} + 8 \, x {\left (e^{2} + 4 \, e + 4\right )} - \frac {1}{9} \, {\left (4 \, x^{3} - 15 \, x^{2} {\left (e + 2\right )} - 18 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )^{2} + 66 \, x {\left (e^{2} + 4 \, e + 4\right )} - 66 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )\right )} e^{3} - \frac {1}{36} \, {\left (9 \, x^{4} - 28 \, x^{3} {\left (e + 2\right )} + 78 \, x^{2} {\left (e^{2} + 4 \, e + 4\right )} + 72 \, {\left (e^{4} + 8 \, e^{3} + 24 \, e^{2} + 32 \, e + 16\right )} \log \left (x + e + 2\right )^{2} - 300 \, x {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} + 300 \, {\left (e^{4} + 8 \, e^{3} + 24 \, e^{2} + 32 \, e + 16\right )} \log \left (x + e + 2\right )\right )} e^{2} + \frac {1}{12} \, {\left (3 \, x^{4} - 4 \, x^{3} {\left (e + 2\right )} + 6 \, x^{2} {\left (e^{2} + 4 \, e + 4\right )} - 12 \, x {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} + 12 \, {\left (e^{4} + 8 \, e^{3} + 24 \, e^{2} + 32 \, e + 16\right )} \log \left (x + e + 2\right )\right )} e^{2} - \frac {2}{9} \, {\left (4 \, x^{3} - 15 \, x^{2} {\left (e + 2\right )} - 18 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )^{2} + 66 \, x {\left (e^{2} + 4 \, e + 4\right )} - 66 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )\right )} e^{2} + \frac {2}{3} \, {\left (2 \, x^{3} - 3 \, x^{2} {\left (e + 2\right )} + 6 \, x {\left (e^{2} + 4 \, e + 4\right )} - 6 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right )\right )} e + 4 \, {\left (e^{4} + 8 \, e^{3} + 24 \, e^{2} + 32 \, e + 16\right )} \log \left (x + e + 2\right ) - 8 \, {\left (e^{3} + 6 \, e^{2} + 12 \, e + 8\right )} \log \left (x + e + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.42, size = 18, normalized size = 0.95 \begin {gather*} x^4\,\left ({\mathrm {e}}^2\,\ln \left ({\mathrm {e}}^3\,\left (x+\mathrm {e}+2\right )\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 20, normalized size = 1.05 \begin {gather*} x^{4} e^{2} \log {\left (\left (x + 2 + e\right ) e^{3} \right )} + x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________