Optimal. Leaf size=30 \[ e^{4-\frac {e^{e^x}}{4}-x}-e^{e+(27-2 x) x} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 33, normalized size of antiderivative = 1.10, number of steps used = 4, number of rules used = 3, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 6706, 2236} \begin {gather*} e^{\frac {1}{4} \left (-4 x-e^{e^x}+16\right )}-e^{-2 x^2+27 x+e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2236
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (e^{\frac {1}{4} \left (16-e^{e^x}-4 x\right )} \left (-4-e^{e^x+x}\right )+e^{e+27 x-2 x^2} (-108+16 x)\right ) \, dx\\ &=\frac {1}{4} \int e^{\frac {1}{4} \left (16-e^{e^x}-4 x\right )} \left (-4-e^{e^x+x}\right ) \, dx+\frac {1}{4} \int e^{e+27 x-2 x^2} (-108+16 x) \, dx\\ &=e^{\frac {1}{4} \left (16-e^{e^x}-4 x\right )}-e^{e+27 x-2 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 34, normalized size = 1.13 \begin {gather*} e^{\frac {1}{4} \left (16-e^{e^x}\right )-x}-e^{e+27 x-2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 35, normalized size = 1.17 \begin {gather*} -e^{\left (-2 \, x^{2} + 27 \, x + e\right )} + e^{\left (-\frac {1}{4} \, {\left (4 \, {\left (x - 4\right )} e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 26, normalized size = 0.87 \begin {gather*} -e^{\left (-2 \, x^{2} + 27 \, x + e\right )} + e^{\left (-x - \frac {1}{4} \, e^{\left (e^{x}\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 27, normalized size = 0.90
method | result | size |
default | \(-{\mathrm e}^{{\mathrm e}-2 x^{2}+27 x}+{\mathrm e}^{-\frac {{\mathrm e}^{{\mathrm e}^{x}}}{4}-x +4}\) | \(27\) |
risch | \(-{\mathrm e}^{{\mathrm e}-2 x^{2}+27 x}+{\mathrm e}^{-\frac {{\mathrm e}^{{\mathrm e}^{x}}}{4}-x +4}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 26, normalized size = 0.87 \begin {gather*} -e^{\left (-2 \, x^{2} + 27 \, x + e\right )} + e^{\left (-x - \frac {1}{4} \, e^{\left (e^{x}\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.72, size = 26, normalized size = 0.87 \begin {gather*} {\mathrm {e}}^{4-\frac {{\mathrm {e}}^{{\mathrm {e}}^x}}{4}-x}-{\mathrm {e}}^{-2\,x^2+27\,x+\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 24, normalized size = 0.80 \begin {gather*} e^{- x - \frac {e^{e^{x}}}{4} + 4} - e^{- 2 x^{2} + 27 x + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________