3.97.41 \(\int \frac {14580+24786 x+17010 x^2+5940 x^3+1080 x^4+90 x^5+2 x^6+e^{\frac {2 (81 x+107 x^2+54 x^3+12 x^4+x^5+e^{2 x} (81 x+108 x^2+54 x^3+12 x^4+x^5))}{81+108 x+54 x^2+12 x^3+x^4}} (12150+19950 x+13600 x^2+4500 x^3+750 x^4+50 x^5+e^{2 x} (12150+44550 x+54000 x^2+31500 x^3+9750 x^4+1550 x^5+100 x^6))+e^{\frac {81 x+107 x^2+54 x^3+12 x^4+x^5+e^{2 x} (81 x+108 x^2+54 x^3+12 x^4+x^5)}{81+108 x+54 x^2+12 x^3+x^4}} (75330+126180 x+88290 x^2+30620 x^3+5550 x^4+460 x^5+10 x^6+e^{2 x} (72900+269730 x+332910 x^2+199800 x^3+64800 x^4+11250 x^5+910 x^6+20 x^7))}{6075+10125 x+6750 x^2+2250 x^3+375 x^4+25 x^5} \, dx\)

Optimal. Leaf size=30 \[ \left (6+e^{x+e^{2 x} x-\frac {x^2}{(3+x)^4}}+\frac {x}{5}\right )^2 \]

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Int[(14580 + 24786*x + 17010*x^2 + 5940*x^3 + 1080*x^4 + 90*x^5 + 2*x^6 + E^((2*(81*x + 107*x^2 + 54*x^3 + 12*
x^4 + x^5 + E^(2*x)*(81*x + 108*x^2 + 54*x^3 + 12*x^4 + x^5)))/(81 + 108*x + 54*x^2 + 12*x^3 + x^4))*(12150 +
19950*x + 13600*x^2 + 4500*x^3 + 750*x^4 + 50*x^5 + E^(2*x)*(12150 + 44550*x + 54000*x^2 + 31500*x^3 + 9750*x^
4 + 1550*x^5 + 100*x^6)) + E^((81*x + 107*x^2 + 54*x^3 + 12*x^4 + x^5 + E^(2*x)*(81*x + 108*x^2 + 54*x^3 + 12*
x^4 + x^5))/(81 + 108*x + 54*x^2 + 12*x^3 + x^4))*(75330 + 126180*x + 88290*x^2 + 30620*x^3 + 5550*x^4 + 460*x
^5 + 10*x^6 + E^(2*x)*(72900 + 269730*x + 332910*x^2 + 199800*x^3 + 64800*x^4 + 11250*x^5 + 910*x^6 + 20*x^7))
)/(6075 + 10125*x + 6750*x^2 + 2250*x^3 + 375*x^4 + 25*x^5),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 56, normalized size = 1.87 \begin {gather*} \frac {1}{25} \left (25 e^{2 x \left (1+e^{2 x}-\frac {x}{(3+x)^4}\right )}+10 e^{x \left (1+e^{2 x}-\frac {x}{(3+x)^4}\right )} (30+x)+x (60+x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(14580 + 24786*x + 17010*x^2 + 5940*x^3 + 1080*x^4 + 90*x^5 + 2*x^6 + E^((2*(81*x + 107*x^2 + 54*x^3
 + 12*x^4 + x^5 + E^(2*x)*(81*x + 108*x^2 + 54*x^3 + 12*x^4 + x^5)))/(81 + 108*x + 54*x^2 + 12*x^3 + x^4))*(12
150 + 19950*x + 13600*x^2 + 4500*x^3 + 750*x^4 + 50*x^5 + E^(2*x)*(12150 + 44550*x + 54000*x^2 + 31500*x^3 + 9
750*x^4 + 1550*x^5 + 100*x^6)) + E^((81*x + 107*x^2 + 54*x^3 + 12*x^4 + x^5 + E^(2*x)*(81*x + 108*x^2 + 54*x^3
 + 12*x^4 + x^5))/(81 + 108*x + 54*x^2 + 12*x^3 + x^4))*(75330 + 126180*x + 88290*x^2 + 30620*x^3 + 5550*x^4 +
 460*x^5 + 10*x^6 + E^(2*x)*(72900 + 269730*x + 332910*x^2 + 199800*x^3 + 64800*x^4 + 11250*x^5 + 910*x^6 + 20
*x^7)))/(6075 + 10125*x + 6750*x^2 + 2250*x^3 + 375*x^4 + 25*x^5),x]

[Out]

(25*E^(2*x*(1 + E^(2*x) - x/(3 + x)^4)) + 10*E^(x*(1 + E^(2*x) - x/(3 + x)^4))*(30 + x) + x*(60 + x))/25

________________________________________________________________________________________

fricas [B]  time = 0.55, size = 157, normalized size = 5.23 \begin {gather*} \frac {1}{25} \, x^{2} + \frac {2}{5} \, {\left (x + 30\right )} e^{\left (\frac {x^{5} + 12 \, x^{4} + 54 \, x^{3} + 107 \, x^{2} + {\left (x^{5} + 12 \, x^{4} + 54 \, x^{3} + 108 \, x^{2} + 81 \, x\right )} e^{\left (2 \, x\right )} + 81 \, x}{x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81}\right )} + \frac {12}{5} \, x + e^{\left (\frac {2 \, {\left (x^{5} + 12 \, x^{4} + 54 \, x^{3} + 107 \, x^{2} + {\left (x^{5} + 12 \, x^{4} + 54 \, x^{3} + 108 \, x^{2} + 81 \, x\right )} e^{\left (2 \, x\right )} + 81 \, x\right )}}{x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x^6+1550*x^5+9750*x^4+31500*x^3+54000*x^2+44550*x+12150)*exp(x)^2+50*x^5+750*x^4+4500*x^3+136
00*x^2+19950*x+12150)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x
^3+54*x^2+108*x+81))^2+((20*x^7+910*x^6+11250*x^5+64800*x^4+199800*x^3+332910*x^2+269730*x+72900)*exp(x)^2+10*
x^6+460*x^5+5550*x^4+30620*x^3+88290*x^2+126180*x+75330)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12
*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x^3+54*x^2+108*x+81))+2*x^6+90*x^5+1080*x^4+5940*x^3+17010*x^2+24786*x+14580
)/(25*x^5+375*x^4+2250*x^3+6750*x^2+10125*x+6075),x, algorithm="fricas")

[Out]

1/25*x^2 + 2/5*(x + 30)*e^((x^5 + 12*x^4 + 54*x^3 + 107*x^2 + (x^5 + 12*x^4 + 54*x^3 + 108*x^2 + 81*x)*e^(2*x)
 + 81*x)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81)) + 12/5*x + e^(2*(x^5 + 12*x^4 + 54*x^3 + 107*x^2 + (x^5 + 12*x^
4 + 54*x^3 + 108*x^2 + 81*x)*e^(2*x) + 81*x)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{6} + 45 \, x^{5} + 540 \, x^{4} + 2970 \, x^{3} + 8505 \, x^{2} + 25 \, {\left (x^{5} + 15 \, x^{4} + 90 \, x^{3} + 272 \, x^{2} + {\left (2 \, x^{6} + 31 \, x^{5} + 195 \, x^{4} + 630 \, x^{3} + 1080 \, x^{2} + 891 \, x + 243\right )} e^{\left (2 \, x\right )} + 399 \, x + 243\right )} e^{\left (\frac {2 \, {\left (x^{5} + 12 \, x^{4} + 54 \, x^{3} + 107 \, x^{2} + {\left (x^{5} + 12 \, x^{4} + 54 \, x^{3} + 108 \, x^{2} + 81 \, x\right )} e^{\left (2 \, x\right )} + 81 \, x\right )}}{x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81}\right )} + 5 \, {\left (x^{6} + 46 \, x^{5} + 555 \, x^{4} + 3062 \, x^{3} + 8829 \, x^{2} + {\left (2 \, x^{7} + 91 \, x^{6} + 1125 \, x^{5} + 6480 \, x^{4} + 19980 \, x^{3} + 33291 \, x^{2} + 26973 \, x + 7290\right )} e^{\left (2 \, x\right )} + 12618 \, x + 7533\right )} e^{\left (\frac {x^{5} + 12 \, x^{4} + 54 \, x^{3} + 107 \, x^{2} + {\left (x^{5} + 12 \, x^{4} + 54 \, x^{3} + 108 \, x^{2} + 81 \, x\right )} e^{\left (2 \, x\right )} + 81 \, x}{x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81}\right )} + 12393 \, x + 7290\right )}}{25 \, {\left (x^{5} + 15 \, x^{4} + 90 \, x^{3} + 270 \, x^{2} + 405 \, x + 243\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x^6+1550*x^5+9750*x^4+31500*x^3+54000*x^2+44550*x+12150)*exp(x)^2+50*x^5+750*x^4+4500*x^3+136
00*x^2+19950*x+12150)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x
^3+54*x^2+108*x+81))^2+((20*x^7+910*x^6+11250*x^5+64800*x^4+199800*x^3+332910*x^2+269730*x+72900)*exp(x)^2+10*
x^6+460*x^5+5550*x^4+30620*x^3+88290*x^2+126180*x+75330)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12
*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x^3+54*x^2+108*x+81))+2*x^6+90*x^5+1080*x^4+5940*x^3+17010*x^2+24786*x+14580
)/(25*x^5+375*x^4+2250*x^3+6750*x^2+10125*x+6075),x, algorithm="giac")

[Out]

integrate(2/25*(x^6 + 45*x^5 + 540*x^4 + 2970*x^3 + 8505*x^2 + 25*(x^5 + 15*x^4 + 90*x^3 + 272*x^2 + (2*x^6 +
31*x^5 + 195*x^4 + 630*x^3 + 1080*x^2 + 891*x + 243)*e^(2*x) + 399*x + 243)*e^(2*(x^5 + 12*x^4 + 54*x^3 + 107*
x^2 + (x^5 + 12*x^4 + 54*x^3 + 108*x^2 + 81*x)*e^(2*x) + 81*x)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81)) + 5*(x^6
+ 46*x^5 + 555*x^4 + 3062*x^3 + 8829*x^2 + (2*x^7 + 91*x^6 + 1125*x^5 + 6480*x^4 + 19980*x^3 + 33291*x^2 + 269
73*x + 7290)*e^(2*x) + 12618*x + 7533)*e^((x^5 + 12*x^4 + 54*x^3 + 107*x^2 + (x^5 + 12*x^4 + 54*x^3 + 108*x^2
+ 81*x)*e^(2*x) + 81*x)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81)) + 12393*x + 7290)/(x^5 + 15*x^4 + 90*x^3 + 270*x
^2 + 405*x + 243), x)

________________________________________________________________________________________

maple [B]  time = 0.34, size = 147, normalized size = 4.90




method result size



risch \(\frac {x^{2}}{25}+\frac {12 x}{5}+{\mathrm e}^{\frac {2 x \left ({\mathrm e}^{2 x} x^{4}+12 \,{\mathrm e}^{2 x} x^{3}+x^{4}+54 \,{\mathrm e}^{2 x} x^{2}+12 x^{3}+108 x \,{\mathrm e}^{2 x}+54 x^{2}+81 \,{\mathrm e}^{2 x}+107 x +81\right )}{\left (3+x \right )^{4}}}+\left (12+\frac {2 x}{5}\right ) {\mathrm e}^{\frac {x \left ({\mathrm e}^{2 x} x^{4}+12 \,{\mathrm e}^{2 x} x^{3}+x^{4}+54 \,{\mathrm e}^{2 x} x^{2}+12 x^{3}+108 x \,{\mathrm e}^{2 x}+54 x^{2}+81 \,{\mathrm e}^{2 x}+107 x +81\right )}{\left (3+x \right )^{4}}}\) \(147\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((100*x^6+1550*x^5+9750*x^4+31500*x^3+54000*x^2+44550*x+12150)*exp(x)^2+50*x^5+750*x^4+4500*x^3+13600*x^2
+19950*x+12150)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x^3+54*
x^2+108*x+81))^2+((20*x^7+910*x^6+11250*x^5+64800*x^4+199800*x^3+332910*x^2+269730*x+72900)*exp(x)^2+10*x^6+46
0*x^5+5550*x^4+30620*x^3+88290*x^2+126180*x+75330)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12*x^4+5
4*x^3+107*x^2+81*x)/(x^4+12*x^3+54*x^2+108*x+81))+2*x^6+90*x^5+1080*x^4+5940*x^3+17010*x^2+24786*x+14580)/(25*
x^5+375*x^4+2250*x^3+6750*x^2+10125*x+6075),x,method=_RETURNVERBOSE)

[Out]

1/25*x^2+12/5*x+exp(2*x*(exp(2*x)*x^4+12*exp(2*x)*x^3+x^4+54*exp(2*x)*x^2+12*x^3+108*x*exp(2*x)+54*x^2+81*exp(
2*x)+107*x+81)/(3+x)^4)+(12+2/5*x)*exp(x*(exp(2*x)*x^4+12*exp(2*x)*x^3+x^4+54*exp(2*x)*x^2+12*x^3+108*x*exp(2*
x)+54*x^2+81*exp(2*x)+107*x+81)/(3+x)^4)

________________________________________________________________________________________

maxima [B]  time = 1.04, size = 370, normalized size = 12.33 \begin {gather*} \frac {1}{25} \, x^{2} + \frac {1}{5} \, {\left (2 \, {\left (x + 30\right )} e^{\left (x e^{\left (2 \, x\right )} + x - \frac {9}{x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81} + \frac {6}{x^{3} + 9 \, x^{2} + 27 \, x + 27} + \frac {1}{x^{2} + 6 \, x + 9}\right )} + 5 \, e^{\left (2 \, x e^{\left (2 \, x\right )} + 2 \, x - \frac {18}{x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81} + \frac {12}{x^{3} + 9 \, x^{2} + 27 \, x + 27}\right )}\right )} e^{\left (-\frac {2}{x^{2} + 6 \, x + 9}\right )} + \frac {12}{5} \, x + \frac {27 \, {\left (80 \, x^{3} + 630 \, x^{2} + 1692 \, x + 1539\right )}}{50 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} - \frac {81 \, {\left (40 \, x^{3} + 300 \, x^{2} + 780 \, x + 693\right )}}{10 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} + \frac {162 \, {\left (16 \, x^{3} + 108 \, x^{2} + 264 \, x + 225\right )}}{5 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} - \frac {297 \, {\left (4 \, x^{3} + 18 \, x^{2} + 36 \, x + 27\right )}}{5 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} - \frac {1701 \, {\left (2 \, x^{2} + 4 \, x + 3\right )}}{10 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} - \frac {4131 \, {\left (4 \, x + 3\right )}}{50 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} - \frac {729}{5 \, {\left (x^{4} + 12 \, x^{3} + 54 \, x^{2} + 108 \, x + 81\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x^6+1550*x^5+9750*x^4+31500*x^3+54000*x^2+44550*x+12150)*exp(x)^2+50*x^5+750*x^4+4500*x^3+136
00*x^2+19950*x+12150)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x
^3+54*x^2+108*x+81))^2+((20*x^7+910*x^6+11250*x^5+64800*x^4+199800*x^3+332910*x^2+269730*x+72900)*exp(x)^2+10*
x^6+460*x^5+5550*x^4+30620*x^3+88290*x^2+126180*x+75330)*exp(((x^5+12*x^4+54*x^3+108*x^2+81*x)*exp(x)^2+x^5+12
*x^4+54*x^3+107*x^2+81*x)/(x^4+12*x^3+54*x^2+108*x+81))+2*x^6+90*x^5+1080*x^4+5940*x^3+17010*x^2+24786*x+14580
)/(25*x^5+375*x^4+2250*x^3+6750*x^2+10125*x+6075),x, algorithm="maxima")

[Out]

1/25*x^2 + 1/5*(2*(x + 30)*e^(x*e^(2*x) + x - 9/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) + 6/(x^3 + 9*x^2 + 27*x +
 27) + 1/(x^2 + 6*x + 9)) + 5*e^(2*x*e^(2*x) + 2*x - 18/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) + 12/(x^3 + 9*x^2
 + 27*x + 27)))*e^(-2/(x^2 + 6*x + 9)) + 12/5*x + 27/50*(80*x^3 + 630*x^2 + 1692*x + 1539)/(x^4 + 12*x^3 + 54*
x^2 + 108*x + 81) - 81/10*(40*x^3 + 300*x^2 + 780*x + 693)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) + 162/5*(16*x^
3 + 108*x^2 + 264*x + 225)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) - 297/5*(4*x^3 + 18*x^2 + 36*x + 27)/(x^4 + 12
*x^3 + 54*x^2 + 108*x + 81) - 1701/10*(2*x^2 + 4*x + 3)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) - 4131/50*(4*x +
3)/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81) - 729/5/(x^4 + 12*x^3 + 54*x^2 + 108*x + 81)

________________________________________________________________________________________

mupad [B]  time = 6.07, size = 549, normalized size = 18.30 \begin {gather*} \frac {12\,x}{5}+{\mathrm {e}}^{\frac {214\,x^2}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {108\,x^3}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {24\,x^4}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {2\,x^5}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {162\,x}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {216\,x^2\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {108\,x^3\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {24\,x^4\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {2\,x^5\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {162\,x\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}}+{\mathrm {e}}^{\frac {107\,x^2}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {54\,x^3}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {12\,x^4}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {x^5}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {81\,x}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {108\,x^2\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {54\,x^3\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {12\,x^4\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {x^5\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}+\frac {81\,x\,{\mathrm {e}}^{2\,x}}{x^4+12\,x^3+54\,x^2+108\,x+81}}\,\left (\frac {2\,x}{5}+12\right )+\frac {x^2}{25} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((24786*x + exp((81*x + exp(2*x)*(81*x + 108*x^2 + 54*x^3 + 12*x^4 + x^5) + 107*x^2 + 54*x^3 + 12*x^4 + x^5
)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81))*(126180*x + exp(2*x)*(269730*x + 332910*x^2 + 199800*x^3 + 64800*x^4 +
 11250*x^5 + 910*x^6 + 20*x^7 + 72900) + 88290*x^2 + 30620*x^3 + 5550*x^4 + 460*x^5 + 10*x^6 + 75330) + 17010*
x^2 + 5940*x^3 + 1080*x^4 + 90*x^5 + 2*x^6 + exp((2*(81*x + exp(2*x)*(81*x + 108*x^2 + 54*x^3 + 12*x^4 + x^5)
+ 107*x^2 + 54*x^3 + 12*x^4 + x^5))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81))*(19950*x + 13600*x^2 + 4500*x^3 + 75
0*x^4 + 50*x^5 + exp(2*x)*(44550*x + 54000*x^2 + 31500*x^3 + 9750*x^4 + 1550*x^5 + 100*x^6 + 12150) + 12150) +
 14580)/(10125*x + 6750*x^2 + 2250*x^3 + 375*x^4 + 25*x^5 + 6075),x)

[Out]

(12*x)/5 + exp((214*x^2)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (108*x^3)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81)
 + (24*x^4)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (2*x^5)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (162*x)/(108
*x + 54*x^2 + 12*x^3 + x^4 + 81) + (216*x^2*exp(2*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (108*x^3*exp(2*x)
)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (24*x^4*exp(2*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (2*x^5*exp(2
*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (162*x*exp(2*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81)) + exp((107*
x^2)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (54*x^3)/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (12*x^4)/(108*x +
54*x^2 + 12*x^3 + x^4 + 81) + x^5/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (81*x)/(108*x + 54*x^2 + 12*x^3 + x^4
 + 81) + (108*x^2*exp(2*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (54*x^3*exp(2*x))/(108*x + 54*x^2 + 12*x^3
+ x^4 + 81) + (12*x^4*exp(2*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81) + (x^5*exp(2*x))/(108*x + 54*x^2 + 12*x^3
 + x^4 + 81) + (81*x*exp(2*x))/(108*x + 54*x^2 + 12*x^3 + x^4 + 81))*((2*x)/5 + 12) + x^2/25

________________________________________________________________________________________

sympy [B]  time = 0.94, size = 158, normalized size = 5.27 \begin {gather*} \frac {x^{2}}{25} + \frac {12 x}{5} + \frac {\left (2 x + 60\right ) e^{\frac {x^{5} + 12 x^{4} + 54 x^{3} + 107 x^{2} + 81 x + \left (x^{5} + 12 x^{4} + 54 x^{3} + 108 x^{2} + 81 x\right ) e^{2 x}}{x^{4} + 12 x^{3} + 54 x^{2} + 108 x + 81}}}{5} + e^{\frac {2 \left (x^{5} + 12 x^{4} + 54 x^{3} + 107 x^{2} + 81 x + \left (x^{5} + 12 x^{4} + 54 x^{3} + 108 x^{2} + 81 x\right ) e^{2 x}\right )}{x^{4} + 12 x^{3} + 54 x^{2} + 108 x + 81}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x**6+1550*x**5+9750*x**4+31500*x**3+54000*x**2+44550*x+12150)*exp(x)**2+50*x**5+750*x**4+4500
*x**3+13600*x**2+19950*x+12150)*exp(((x**5+12*x**4+54*x**3+108*x**2+81*x)*exp(x)**2+x**5+12*x**4+54*x**3+107*x
**2+81*x)/(x**4+12*x**3+54*x**2+108*x+81))**2+((20*x**7+910*x**6+11250*x**5+64800*x**4+199800*x**3+332910*x**2
+269730*x+72900)*exp(x)**2+10*x**6+460*x**5+5550*x**4+30620*x**3+88290*x**2+126180*x+75330)*exp(((x**5+12*x**4
+54*x**3+108*x**2+81*x)*exp(x)**2+x**5+12*x**4+54*x**3+107*x**2+81*x)/(x**4+12*x**3+54*x**2+108*x+81))+2*x**6+
90*x**5+1080*x**4+5940*x**3+17010*x**2+24786*x+14580)/(25*x**5+375*x**4+2250*x**3+6750*x**2+10125*x+6075),x)

[Out]

x**2/25 + 12*x/5 + (2*x + 60)*exp((x**5 + 12*x**4 + 54*x**3 + 107*x**2 + 81*x + (x**5 + 12*x**4 + 54*x**3 + 10
8*x**2 + 81*x)*exp(2*x))/(x**4 + 12*x**3 + 54*x**2 + 108*x + 81))/5 + exp(2*(x**5 + 12*x**4 + 54*x**3 + 107*x*
*2 + 81*x + (x**5 + 12*x**4 + 54*x**3 + 108*x**2 + 81*x)*exp(2*x))/(x**4 + 12*x**3 + 54*x**2 + 108*x + 81))

________________________________________________________________________________________