Optimal. Leaf size=21 \[ -\frac {e^4}{-10+x}-x+\frac {3 x^2}{2} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 1.05, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {27, 1850} \begin {gather*} \frac {3 x^2}{2}-x+\frac {e^4}{10-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-100+e^4+320 x-61 x^2+3 x^3}{(-10+x)^2} \, dx\\ &=\int \left (-1+\frac {e^4}{(-10+x)^2}+3 x\right ) \, dx\\ &=\frac {e^4}{10-x}-x+\frac {3 x^2}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.00 \begin {gather*} -\frac {e^4}{-10+x}-x+\frac {3 x^2}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 25, normalized size = 1.19 \begin {gather*} \frac {3 \, x^{3} - 32 \, x^{2} + 20 \, x - 2 \, e^{4}}{2 \, {\left (x - 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 18, normalized size = 0.86 \begin {gather*} \frac {3}{2} \, x^{2} - x - \frac {e^{4}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 19, normalized size = 0.90
method | result | size |
default | \(\frac {3 x^{2}}{2}-\frac {{\mathrm e}^{4}}{x -10}-x\) | \(19\) |
risch | \(\frac {3 x^{2}}{2}-\frac {{\mathrm e}^{4}}{x -10}-x\) | \(19\) |
norman | \(\frac {\frac {3 x^{3}}{2}-16 x^{2}+100-{\mathrm e}^{4}}{x -10}\) | \(23\) |
gosper | \(-\frac {-3 x^{3}+32 x^{2}+2 \,{\mathrm e}^{4}-200}{2 \left (x -10\right )}\) | \(24\) |
meijerg | \(\frac {31 x}{1-\frac {x}{10}}+\frac {x \,{\mathrm e}^{4}}{100-10 x}+\frac {15 x \left (-\frac {1}{50} x^{2}-\frac {3}{5} x +12\right )}{2 \left (1-\frac {x}{10}\right )}-\frac {61 x \left (-\frac {3 x}{10}+6\right )}{3 \left (1-\frac {x}{10}\right )}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 18, normalized size = 0.86 \begin {gather*} \frac {3}{2} \, x^{2} - x - \frac {e^{4}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 18, normalized size = 0.86 \begin {gather*} \frac {3\,x^2}{2}-x-\frac {{\mathrm {e}}^4}{x-10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.67 \begin {gather*} \frac {3 x^{2}}{2} - x - \frac {e^{4}}{x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________