Optimal. Leaf size=27 \[ \frac {5 \left (-3+x \left (-x+\log \left (5 x^2\right )\right )\right )}{(2-5 x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {30-75 x+10 x^2-25 x^3+\left (-55 x-70 x^2+25 x^3\right ) \log (x)+\left (-10 x+25 x^2+10 x \log (x)\right ) \log \left (5 x^2\right )}{\left (4 x-20 x^2+25 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {30-75 x+10 x^2-25 x^3+\left (-55 x-70 x^2+25 x^3\right ) \log (x)+\left (-10 x+25 x^2+10 x \log (x)\right ) \log \left (5 x^2\right )}{x \left (4-20 x+25 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {30-75 x+10 x^2-25 x^3+\left (-55 x-70 x^2+25 x^3\right ) \log (x)+\left (-10 x+25 x^2+10 x \log (x)\right ) \log \left (5 x^2\right )}{x (-2+5 x)^2 \log ^2(x)} \, dx\\ &=\int \left (-\frac {75}{(-2+5 x)^2 \log ^2(x)}+\frac {30}{x (-2+5 x)^2 \log ^2(x)}+\frac {10 x}{(-2+5 x)^2 \log ^2(x)}-\frac {25 x^2}{(-2+5 x)^2 \log ^2(x)}+\frac {5 \left (-11-14 x+5 x^2\right )}{(-2+5 x)^2 \log (x)}+\frac {5 (-2+5 x+2 \log (x)) \log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)}\right ) \, dx\\ &=5 \int \frac {-11-14 x+5 x^2}{(-2+5 x)^2 \log (x)} \, dx+5 \int \frac {(-2+5 x+2 \log (x)) \log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)} \, dx+10 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx-25 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx+30 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-75 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=5 \int \frac {-11-14 x+5 x^2}{(-2+5 x)^2 \log (x)} \, dx+5 \int \left (-\frac {2 \log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)}+\frac {5 x \log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)}+\frac {2 \log \left (5 x^2\right )}{(-2+5 x)^2 \log (x)}\right ) \, dx+10 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx-25 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx+30 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-75 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=5 \int \frac {-11-14 x+5 x^2}{(-2+5 x)^2 \log (x)} \, dx+10 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx-10 \int \frac {\log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)} \, dx+10 \int \frac {\log \left (5 x^2\right )}{(-2+5 x)^2 \log (x)} \, dx-25 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx+25 \int \frac {x \log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)} \, dx+30 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-75 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=5 \int \frac {-11-14 x+5 x^2}{(-2+5 x)^2 \log (x)} \, dx+10 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx-10 \int \frac {\log \left (5 x^2\right )}{(-2+5 x)^2 \log ^2(x)} \, dx+10 \int \frac {\log \left (5 x^2\right )}{(-2+5 x)^2 \log (x)} \, dx-25 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx+25 \int \left (\frac {2 \log \left (5 x^2\right )}{5 (-2+5 x)^2 \log ^2(x)}+\frac {\log \left (5 x^2\right )}{5 (-2+5 x) \log ^2(x)}\right ) \, dx+30 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-75 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx\\ &=5 \int \frac {-11-14 x+5 x^2}{(-2+5 x)^2 \log (x)} \, dx+5 \int \frac {\log \left (5 x^2\right )}{(-2+5 x) \log ^2(x)} \, dx+10 \int \frac {x}{(-2+5 x)^2 \log ^2(x)} \, dx+10 \int \frac {\log \left (5 x^2\right )}{(-2+5 x)^2 \log (x)} \, dx-25 \int \frac {x^2}{(-2+5 x)^2 \log ^2(x)} \, dx+30 \int \frac {1}{x (-2+5 x)^2 \log ^2(x)} \, dx-75 \int \frac {1}{(-2+5 x)^2 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 29, normalized size = 1.07 \begin {gather*} 2+\frac {5 \left (3+x^2-x \log \left (5 x^2\right )\right )}{(-2+5 x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 28, normalized size = 1.04 \begin {gather*} \frac {5 \, x^{2} - 5 \, x \log \relax (5) - 4 \, \log \relax (x) + 15}{{\left (5 \, x - 2\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 34, normalized size = 1.26 \begin {gather*} \frac {5 \, {\left (x^{2} - x \log \relax (5) + 3\right )}}{5 \, x \log \relax (x) - 2 \, \log \relax (x)} - \frac {4}{5 \, x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 88, normalized size = 3.26
method | result | size |
risch | \(-\frac {4}{5 x -2}+\frac {\frac {5 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}-5 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+15+\frac {5 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-5 x \ln \relax (5)+5 x^{2}}{\left (5 x -2\right ) \ln \relax (x )}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 28, normalized size = 1.04 \begin {gather*} \frac {5 \, x^{2} - 5 \, x \log \relax (5) - 4 \, \log \relax (x) + 15}{{\left (5 \, x - 2\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 27, normalized size = 1.00 \begin {gather*} \frac {5\,\left (x^2-x\,\ln \left (5\,x^2\right )+3\right )}{\ln \relax (x)\,\left (5\,x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 27, normalized size = 1.00 \begin {gather*} - \frac {20}{25 x - 10} + \frac {5 x^{2} - 5 x \log {\relax (5 )} + 15}{\left (5 x - 2\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________