Optimal. Leaf size=33 \[ 5-\frac {\left (x-\log \left (\frac {1}{5} \left (-2+e^x-x\right )\right )\right ) (x+2 \log (x+\log (9)))}{x} \]
________________________________________________________________________________________
Rubi [F] time = 5.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^2-2 e^x x^2+3 x^3+x^4+\left (x^2+x^3\right ) \log (9)+\left (-2 x^2-2 x \log (9)+e^x \left (2 x^2+2 x \log (9)\right )\right ) \log (x+\log (9))+\log \left (\frac {1}{5} \left (-2+e^x-x\right )\right ) \left (-4 x+2 e^x x-2 x^2+\left (4 x+2 x^2+e^x (-2 x-2 \log (9))+(4+2 x) \log (9)\right ) \log (x+\log (9))\right )}{-2 x^3-x^4+\left (-2 x^2-x^3\right ) \log (9)+e^x \left (x^3+x^2 \log (9)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-2+e^x-x\right ) \log \left (\frac {1}{5} \left (-2+e^x-x\right )\right ) (-x+(x+\log (9)) \log (x+\log (9)))-x \left (x \left (4-2 e^x+x^2+\log (9)+x (3+\log (9))\right )+2 \left (-1+e^x\right ) (x+\log (9)) \log (x+\log (9))\right )}{x^2 \left (2-e^x+x\right ) (x+\log (9))} \, dx\\ &=\int \left (\frac {(1+x) (x+2 \log (x+\log (9)))}{\left (-2+e^x-x\right ) x}+\frac {2 \left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) (-x+x \log (x+\log (9))+\log (9) \log (x+\log (9)))}{x^2 (x+\log (9))}\right ) \, dx\\ &=2 \int \frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) (-x+x \log (x+\log (9))+\log (9) \log (x+\log (9)))}{x^2 (x+\log (9))} \, dx+\int \frac {(1+x) (x+2 \log (x+\log (9)))}{\left (-2+e^x-x\right ) x} \, dx\\ &=2 \int \frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) (-x+(x+\log (9)) \log (x+\log (9)))}{x^2 (x+\log (9))} \, dx+\int \left (\frac {x+2 \log (x+\log (9))}{-2+e^x-x}+\frac {x+2 \log (x+\log (9))}{\left (-2+e^x-x\right ) x}\right ) \, dx\\ &=2 \int \left (\frac {-x-\log (5)+\log \left (-2+e^x-x\right )}{x (x+\log (9))}+\frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) \log (x+\log (9))}{x^2}\right ) \, dx+\int \frac {x+2 \log (x+\log (9))}{-2+e^x-x} \, dx+\int \frac {x+2 \log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx\\ &=2 \int \frac {-x-\log (5)+\log \left (-2+e^x-x\right )}{x (x+\log (9))} \, dx+2 \int \frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) \log (x+\log (9))}{x^2} \, dx+\int \left (\frac {x}{-2+e^x-x}+\frac {2 \log (x+\log (9))}{-2+e^x-x}\right ) \, dx+\int \left (\frac {1}{-2+e^x-x}+\frac {2 \log (x+\log (9))}{\left (-2+e^x-x\right ) x}\right ) \, dx\\ &=2 \int \left (\frac {-x-\log (5)}{x (x+\log (9))}+\frac {\log \left (-2+e^x-x\right )}{x (x+\log (9))}\right ) \, dx+2 \int \frac {\log (x+\log (9))}{-2+e^x-x} \, dx+2 \int \frac {\log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx+2 \int \left (\frac {\log (x+\log (9))}{x}+\frac {\log (5) \log (x+\log (9))}{x^2}-\frac {\log \left (-2+e^x-x\right ) \log (x+\log (9))}{x^2}\right ) \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=2 \int \frac {-x-\log (5)}{x (x+\log (9))} \, dx+2 \int \frac {\log \left (-2+e^x-x\right )}{x (x+\log (9))} \, dx+2 \int \frac {\log (x+\log (9))}{x} \, dx-2 \int \frac {\log \left (-2+e^x-x\right ) \log (x+\log (9))}{x^2} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+(2 \log (5)) \int \frac {\log (x+\log (9))}{x^2} \, dx+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=2 \log (x) \log (\log (9))-\frac {2 \log (5) \log (x+\log (9))}{x}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}+2 \int \left (-\frac {\log (5)}{x \log (9)}-\frac {\log \left (\frac {9}{5}\right )}{\log (9) (x+\log (9))}\right ) \, dx-2 \int \frac {\log \left (-2+e^x-x\right )}{x (x+\log (9))} \, dx+2 \int \left (\frac {\log \left (-2+e^x-x\right )}{x \log (9)}-\frac {\log \left (-2+e^x-x\right )}{\log (9) (x+\log (9))}\right ) \, dx+2 \int \frac {\log \left (1+\frac {x}{\log (9)}\right )}{x} \, dx-2 \int \frac {\left (-1+e^x\right ) \log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+(2 \log (5)) \int \frac {1}{x (x+\log (9))} \, dx+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x)}{\log (9)}+2 \log (x) \log (\log (9))-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \text {Li}_2\left (-\frac {x}{\log (9)}\right )-2 \int \left (\frac {\log \left (-2+e^x-x\right )}{x \log (9)}-\frac {\log \left (-2+e^x-x\right )}{\log (9) (x+\log (9))}\right ) \, dx-2 \int \left (\frac {\log (x+\log (9))}{x}+\frac {(1+x) \log (x+\log (9))}{\left (-2+e^x-x\right ) x}\right ) \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+\frac {2 \int \frac {\log \left (-2+e^x-x\right )}{x} \, dx}{\log (9)}-\frac {2 \int \frac {\log \left (-2+e^x-x\right )}{x+\log (9)} \, dx}{\log (9)}+\frac {(2 \log (5)) \int \frac {1}{x} \, dx}{\log (9)}-\frac {(2 \log (5)) \int \frac {1}{x+\log (9)} \, dx}{\log (9)}+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=2 \log (x) \log (\log (9))-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \text {Li}_2\left (-\frac {x}{\log (9)}\right )-2 \int \frac {\log (x+\log (9))}{x} \, dx-2 \int \frac {(1+x) \log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \text {Li}_2\left (-\frac {x}{\log (9)}\right )-2 \int \frac {\log \left (1+\frac {x}{\log (9)}\right )}{x} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx+\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+2 \int \left (\frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)}+\frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)}\right ) \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 43, normalized size = 1.30 \begin {gather*} -x+\log \left (2-e^x+x\right )-2 \log (x+\log (9))+\frac {2 \log \left (\frac {1}{5} \left (-2+e^x-x\right )\right ) \log (x+\log (9))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 42, normalized size = 1.27 \begin {gather*} -\frac {x^{2} + 2 \, x \log \left (x + 2 \, \log \relax (3)\right ) - {\left (x + 2 \, \log \left (x + 2 \, \log \relax (3)\right )\right )} \log \left (-\frac {1}{5} \, x + \frac {1}{5} \, e^{x} - \frac {2}{5}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 58, normalized size = 1.76 \begin {gather*} -\frac {x^{2} - x \log \left (x - e^{x} + 2\right ) + 2 \, x \log \left (x + 2 \, \log \relax (3)\right ) + 2 \, \log \relax (5) \log \left (x + 2 \, \log \relax (3)\right ) - 2 \, \log \left (x + 2 \, \log \relax (3)\right ) \log \left (-x + e^{x} - 2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 44, normalized size = 1.33
method | result | size |
risch | \(\frac {2 \ln \left (2 \ln \relax (3)+x \right ) \ln \left (\frac {{\mathrm e}^{x}}{5}-\frac {2}{5}-\frac {x}{5}\right )}{x}-2 \ln \left (2 \ln \relax (3)+x \right )-x +\ln \left ({\mathrm e}^{x}-2-x \right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 43, normalized size = 1.30 \begin {gather*} -\frac {x^{2} + 2 \, {\left (x + \log \relax (5)\right )} \log \left (x + 2 \, \log \relax (3)\right ) - {\left (x + 2 \, \log \left (x + 2 \, \log \relax (3)\right )\right )} \log \left (-x + e^{x} - 2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {4\,x^2-\ln \left (x+2\,\ln \relax (3)\right )\,\left (4\,x\,\ln \relax (3)-{\mathrm {e}}^x\,\left (2\,x^2+4\,\ln \relax (3)\,x\right )+2\,x^2\right )-\ln \left (\frac {{\mathrm {e}}^x}{5}-\frac {x}{5}-\frac {2}{5}\right )\,\left (4\,x-\ln \left (x+2\,\ln \relax (3)\right )\,\left (4\,x+2\,\ln \relax (3)\,\left (2\,x+4\right )-{\mathrm {e}}^x\,\left (2\,x+4\,\ln \relax (3)\right )+2\,x^2\right )-2\,x\,{\mathrm {e}}^x+2\,x^2\right )-2\,x^2\,{\mathrm {e}}^x+3\,x^3+x^4+2\,\ln \relax (3)\,\left (x^3+x^2\right )}{2\,\ln \relax (3)\,\left (x^3+2\,x^2\right )-{\mathrm {e}}^x\,\left (x^3+2\,\ln \relax (3)\,x^2\right )+2\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 44, normalized size = 1.33 \begin {gather*} - x - 2 \log {\left (x + 2 \log {\relax (3 )} \right )} + \log {\left (- x + e^{x} - 2 \right )} + \frac {2 \log {\left (x + 2 \log {\relax (3 )} \right )} \log {\left (- \frac {x}{5} + \frac {e^{x}}{5} - \frac {2}{5} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________