3.97.4 \(\int \frac {4 x^2-2 e^x x^2+3 x^3+x^4+(x^2+x^3) \log (9)+(-2 x^2-2 x \log (9)+e^x (2 x^2+2 x \log (9))) \log (x+\log (9))+\log (\frac {1}{5} (-2+e^x-x)) (-4 x+2 e^x x-2 x^2+(4 x+2 x^2+e^x (-2 x-2 \log (9))+(4+2 x) \log (9)) \log (x+\log (9)))}{-2 x^3-x^4+(-2 x^2-x^3) \log (9)+e^x (x^3+x^2 \log (9))} \, dx\)

Optimal. Leaf size=33 \[ 5-\frac {\left (x-\log \left (\frac {1}{5} \left (-2+e^x-x\right )\right )\right ) (x+2 \log (x+\log (9)))}{x} \]

________________________________________________________________________________________

Rubi [F]  time = 5.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^2-2 e^x x^2+3 x^3+x^4+\left (x^2+x^3\right ) \log (9)+\left (-2 x^2-2 x \log (9)+e^x \left (2 x^2+2 x \log (9)\right )\right ) \log (x+\log (9))+\log \left (\frac {1}{5} \left (-2+e^x-x\right )\right ) \left (-4 x+2 e^x x-2 x^2+\left (4 x+2 x^2+e^x (-2 x-2 \log (9))+(4+2 x) \log (9)\right ) \log (x+\log (9))\right )}{-2 x^3-x^4+\left (-2 x^2-x^3\right ) \log (9)+e^x \left (x^3+x^2 \log (9)\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(4*x^2 - 2*E^x*x^2 + 3*x^3 + x^4 + (x^2 + x^3)*Log[9] + (-2*x^2 - 2*x*Log[9] + E^x*(2*x^2 + 2*x*Log[9]))*L
og[x + Log[9]] + Log[(-2 + E^x - x)/5]*(-4*x + 2*E^x*x - 2*x^2 + (4*x + 2*x^2 + E^x*(-2*x - 2*Log[9]) + (4 + 2
*x)*Log[9])*Log[x + Log[9]]))/(-2*x^3 - x^4 + (-2*x^2 - x^3)*Log[9] + E^x*(x^3 + x^2*Log[9])),x]

[Out]

(-2*Log[5]*Log[x + Log[9]])/x - (2*Log[9/5]*Log[x + Log[9]])/Log[9] - (2*Log[5]*Log[x + Log[9]])/Log[9] + (2*L
og[-2 + E^x - x]*Log[x + Log[9]])/x + Defer[Int][(-2 + E^x - x)^(-1), x] + Defer[Int][x/(-2 + E^x - x), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-2+e^x-x\right ) \log \left (\frac {1}{5} \left (-2+e^x-x\right )\right ) (-x+(x+\log (9)) \log (x+\log (9)))-x \left (x \left (4-2 e^x+x^2+\log (9)+x (3+\log (9))\right )+2 \left (-1+e^x\right ) (x+\log (9)) \log (x+\log (9))\right )}{x^2 \left (2-e^x+x\right ) (x+\log (9))} \, dx\\ &=\int \left (\frac {(1+x) (x+2 \log (x+\log (9)))}{\left (-2+e^x-x\right ) x}+\frac {2 \left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) (-x+x \log (x+\log (9))+\log (9) \log (x+\log (9)))}{x^2 (x+\log (9))}\right ) \, dx\\ &=2 \int \frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) (-x+x \log (x+\log (9))+\log (9) \log (x+\log (9)))}{x^2 (x+\log (9))} \, dx+\int \frac {(1+x) (x+2 \log (x+\log (9)))}{\left (-2+e^x-x\right ) x} \, dx\\ &=2 \int \frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) (-x+(x+\log (9)) \log (x+\log (9)))}{x^2 (x+\log (9))} \, dx+\int \left (\frac {x+2 \log (x+\log (9))}{-2+e^x-x}+\frac {x+2 \log (x+\log (9))}{\left (-2+e^x-x\right ) x}\right ) \, dx\\ &=2 \int \left (\frac {-x-\log (5)+\log \left (-2+e^x-x\right )}{x (x+\log (9))}+\frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) \log (x+\log (9))}{x^2}\right ) \, dx+\int \frac {x+2 \log (x+\log (9))}{-2+e^x-x} \, dx+\int \frac {x+2 \log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx\\ &=2 \int \frac {-x-\log (5)+\log \left (-2+e^x-x\right )}{x (x+\log (9))} \, dx+2 \int \frac {\left (x+\log (5)-\log \left (-2+e^x-x\right )\right ) \log (x+\log (9))}{x^2} \, dx+\int \left (\frac {x}{-2+e^x-x}+\frac {2 \log (x+\log (9))}{-2+e^x-x}\right ) \, dx+\int \left (\frac {1}{-2+e^x-x}+\frac {2 \log (x+\log (9))}{\left (-2+e^x-x\right ) x}\right ) \, dx\\ &=2 \int \left (\frac {-x-\log (5)}{x (x+\log (9))}+\frac {\log \left (-2+e^x-x\right )}{x (x+\log (9))}\right ) \, dx+2 \int \frac {\log (x+\log (9))}{-2+e^x-x} \, dx+2 \int \frac {\log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx+2 \int \left (\frac {\log (x+\log (9))}{x}+\frac {\log (5) \log (x+\log (9))}{x^2}-\frac {\log \left (-2+e^x-x\right ) \log (x+\log (9))}{x^2}\right ) \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=2 \int \frac {-x-\log (5)}{x (x+\log (9))} \, dx+2 \int \frac {\log \left (-2+e^x-x\right )}{x (x+\log (9))} \, dx+2 \int \frac {\log (x+\log (9))}{x} \, dx-2 \int \frac {\log \left (-2+e^x-x\right ) \log (x+\log (9))}{x^2} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+(2 \log (5)) \int \frac {\log (x+\log (9))}{x^2} \, dx+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=2 \log (x) \log (\log (9))-\frac {2 \log (5) \log (x+\log (9))}{x}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}+2 \int \left (-\frac {\log (5)}{x \log (9)}-\frac {\log \left (\frac {9}{5}\right )}{\log (9) (x+\log (9))}\right ) \, dx-2 \int \frac {\log \left (-2+e^x-x\right )}{x (x+\log (9))} \, dx+2 \int \left (\frac {\log \left (-2+e^x-x\right )}{x \log (9)}-\frac {\log \left (-2+e^x-x\right )}{\log (9) (x+\log (9))}\right ) \, dx+2 \int \frac {\log \left (1+\frac {x}{\log (9)}\right )}{x} \, dx-2 \int \frac {\left (-1+e^x\right ) \log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+(2 \log (5)) \int \frac {1}{x (x+\log (9))} \, dx+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x)}{\log (9)}+2 \log (x) \log (\log (9))-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \text {Li}_2\left (-\frac {x}{\log (9)}\right )-2 \int \left (\frac {\log \left (-2+e^x-x\right )}{x \log (9)}-\frac {\log \left (-2+e^x-x\right )}{\log (9) (x+\log (9))}\right ) \, dx-2 \int \left (\frac {\log (x+\log (9))}{x}+\frac {(1+x) \log (x+\log (9))}{\left (-2+e^x-x\right ) x}\right ) \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+\frac {2 \int \frac {\log \left (-2+e^x-x\right )}{x} \, dx}{\log (9)}-\frac {2 \int \frac {\log \left (-2+e^x-x\right )}{x+\log (9)} \, dx}{\log (9)}+\frac {(2 \log (5)) \int \frac {1}{x} \, dx}{\log (9)}-\frac {(2 \log (5)) \int \frac {1}{x+\log (9)} \, dx}{\log (9)}+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=2 \log (x) \log (\log (9))-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \text {Li}_2\left (-\frac {x}{\log (9)}\right )-2 \int \frac {\log (x+\log (9))}{x} \, dx-2 \int \frac {(1+x) \log (x+\log (9))}{\left (-2+e^x-x\right ) x} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+(2 \log (x+\log (9))) \int \frac {1}{-2+e^x-x} \, dx+(2 \log (x+\log (9))) \int \frac {1}{\left (-2+e^x-x\right ) x} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \text {Li}_2\left (-\frac {x}{\log (9)}\right )-2 \int \frac {\log \left (1+\frac {x}{\log (9)}\right )}{x} \, dx-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx+\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}-2 \int \frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)} \, dx-2 \int \frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)} \, dx+2 \int \left (\frac {\int \frac {1}{-2+e^x-x} \, dx}{x+\log (9)}+\frac {\int \frac {1}{\left (-2+e^x-x\right ) x} \, dx}{x+\log (9)}\right ) \, dx+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ &=-\frac {2 \log (5) \log (x+\log (9))}{x}-\frac {2 \log \left (\frac {9}{5}\right ) \log (x+\log (9))}{\log (9)}-\frac {2 \log (5) \log (x+\log (9))}{\log (9)}+\frac {2 \log \left (-2+e^x-x\right ) \log (x+\log (9))}{x}+\int \frac {1}{-2+e^x-x} \, dx+\int \frac {x}{-2+e^x-x} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 43, normalized size = 1.30 \begin {gather*} -x+\log \left (2-e^x+x\right )-2 \log (x+\log (9))+\frac {2 \log \left (\frac {1}{5} \left (-2+e^x-x\right )\right ) \log (x+\log (9))}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4*x^2 - 2*E^x*x^2 + 3*x^3 + x^4 + (x^2 + x^3)*Log[9] + (-2*x^2 - 2*x*Log[9] + E^x*(2*x^2 + 2*x*Log[
9]))*Log[x + Log[9]] + Log[(-2 + E^x - x)/5]*(-4*x + 2*E^x*x - 2*x^2 + (4*x + 2*x^2 + E^x*(-2*x - 2*Log[9]) +
(4 + 2*x)*Log[9])*Log[x + Log[9]]))/(-2*x^3 - x^4 + (-2*x^2 - x^3)*Log[9] + E^x*(x^3 + x^2*Log[9])),x]

[Out]

-x + Log[2 - E^x + x] - 2*Log[x + Log[9]] + (2*Log[(-2 + E^x - x)/5]*Log[x + Log[9]])/x

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 42, normalized size = 1.27 \begin {gather*} -\frac {x^{2} + 2 \, x \log \left (x + 2 \, \log \relax (3)\right ) - {\left (x + 2 \, \log \left (x + 2 \, \log \relax (3)\right )\right )} \log \left (-\frac {1}{5} \, x + \frac {1}{5} \, e^{x} - \frac {2}{5}\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-4*log(3)-2*x)*exp(x)+2*(2*x+4)*log(3)+2*x^2+4*x)*log(2*log(3)+x)+2*exp(x)*x-2*x^2-4*x)*log(1/5*
exp(x)-2/5-1/5*x)+((4*x*log(3)+2*x^2)*exp(x)-4*x*log(3)-2*x^2)*log(2*log(3)+x)-2*exp(x)*x^2+2*(x^3+x^2)*log(3)
+x^4+3*x^3+4*x^2)/((2*x^2*log(3)+x^3)*exp(x)+2*(-x^3-2*x^2)*log(3)-x^4-2*x^3),x, algorithm="fricas")

[Out]

-(x^2 + 2*x*log(x + 2*log(3)) - (x + 2*log(x + 2*log(3)))*log(-1/5*x + 1/5*e^x - 2/5))/x

________________________________________________________________________________________

giac [A]  time = 0.27, size = 58, normalized size = 1.76 \begin {gather*} -\frac {x^{2} - x \log \left (x - e^{x} + 2\right ) + 2 \, x \log \left (x + 2 \, \log \relax (3)\right ) + 2 \, \log \relax (5) \log \left (x + 2 \, \log \relax (3)\right ) - 2 \, \log \left (x + 2 \, \log \relax (3)\right ) \log \left (-x + e^{x} - 2\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-4*log(3)-2*x)*exp(x)+2*(2*x+4)*log(3)+2*x^2+4*x)*log(2*log(3)+x)+2*exp(x)*x-2*x^2-4*x)*log(1/5*
exp(x)-2/5-1/5*x)+((4*x*log(3)+2*x^2)*exp(x)-4*x*log(3)-2*x^2)*log(2*log(3)+x)-2*exp(x)*x^2+2*(x^3+x^2)*log(3)
+x^4+3*x^3+4*x^2)/((2*x^2*log(3)+x^3)*exp(x)+2*(-x^3-2*x^2)*log(3)-x^4-2*x^3),x, algorithm="giac")

[Out]

-(x^2 - x*log(x - e^x + 2) + 2*x*log(x + 2*log(3)) + 2*log(5)*log(x + 2*log(3)) - 2*log(x + 2*log(3))*log(-x +
 e^x - 2))/x

________________________________________________________________________________________

maple [A]  time = 0.07, size = 44, normalized size = 1.33




method result size



risch \(\frac {2 \ln \left (2 \ln \relax (3)+x \right ) \ln \left (\frac {{\mathrm e}^{x}}{5}-\frac {2}{5}-\frac {x}{5}\right )}{x}-2 \ln \left (2 \ln \relax (3)+x \right )-x +\ln \left ({\mathrm e}^{x}-2-x \right )\) \(44\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((-4*ln(3)-2*x)*exp(x)+2*(2*x+4)*ln(3)+2*x^2+4*x)*ln(2*ln(3)+x)+2*exp(x)*x-2*x^2-4*x)*ln(1/5*exp(x)-2/5-
1/5*x)+((4*x*ln(3)+2*x^2)*exp(x)-4*x*ln(3)-2*x^2)*ln(2*ln(3)+x)-2*exp(x)*x^2+2*(x^3+x^2)*ln(3)+x^4+3*x^3+4*x^2
)/((2*x^2*ln(3)+x^3)*exp(x)+2*(-x^3-2*x^2)*ln(3)-x^4-2*x^3),x,method=_RETURNVERBOSE)

[Out]

2/x*ln(2*ln(3)+x)*ln(1/5*exp(x)-2/5-1/5*x)-2*ln(2*ln(3)+x)-x+ln(exp(x)-2-x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 43, normalized size = 1.30 \begin {gather*} -\frac {x^{2} + 2 \, {\left (x + \log \relax (5)\right )} \log \left (x + 2 \, \log \relax (3)\right ) - {\left (x + 2 \, \log \left (x + 2 \, \log \relax (3)\right )\right )} \log \left (-x + e^{x} - 2\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-4*log(3)-2*x)*exp(x)+2*(2*x+4)*log(3)+2*x^2+4*x)*log(2*log(3)+x)+2*exp(x)*x-2*x^2-4*x)*log(1/5*
exp(x)-2/5-1/5*x)+((4*x*log(3)+2*x^2)*exp(x)-4*x*log(3)-2*x^2)*log(2*log(3)+x)-2*exp(x)*x^2+2*(x^3+x^2)*log(3)
+x^4+3*x^3+4*x^2)/((2*x^2*log(3)+x^3)*exp(x)+2*(-x^3-2*x^2)*log(3)-x^4-2*x^3),x, algorithm="maxima")

[Out]

-(x^2 + 2*(x + log(5))*log(x + 2*log(3)) - (x + 2*log(x + 2*log(3)))*log(-x + e^x - 2))/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {4\,x^2-\ln \left (x+2\,\ln \relax (3)\right )\,\left (4\,x\,\ln \relax (3)-{\mathrm {e}}^x\,\left (2\,x^2+4\,\ln \relax (3)\,x\right )+2\,x^2\right )-\ln \left (\frac {{\mathrm {e}}^x}{5}-\frac {x}{5}-\frac {2}{5}\right )\,\left (4\,x-\ln \left (x+2\,\ln \relax (3)\right )\,\left (4\,x+2\,\ln \relax (3)\,\left (2\,x+4\right )-{\mathrm {e}}^x\,\left (2\,x+4\,\ln \relax (3)\right )+2\,x^2\right )-2\,x\,{\mathrm {e}}^x+2\,x^2\right )-2\,x^2\,{\mathrm {e}}^x+3\,x^3+x^4+2\,\ln \relax (3)\,\left (x^3+x^2\right )}{2\,\ln \relax (3)\,\left (x^3+2\,x^2\right )-{\mathrm {e}}^x\,\left (x^3+2\,\ln \relax (3)\,x^2\right )+2\,x^3+x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x^2 - log(x + 2*log(3))*(4*x*log(3) - exp(x)*(4*x*log(3) + 2*x^2) + 2*x^2) - log(exp(x)/5 - x/5 - 2/5)
*(4*x - log(x + 2*log(3))*(4*x + 2*log(3)*(2*x + 4) - exp(x)*(2*x + 4*log(3)) + 2*x^2) - 2*x*exp(x) + 2*x^2) -
 2*x^2*exp(x) + 3*x^3 + x^4 + 2*log(3)*(x^2 + x^3))/(2*log(3)*(2*x^2 + x^3) - exp(x)*(2*x^2*log(3) + x^3) + 2*
x^3 + x^4),x)

[Out]

int(-(4*x^2 - log(x + 2*log(3))*(4*x*log(3) - exp(x)*(4*x*log(3) + 2*x^2) + 2*x^2) - log(exp(x)/5 - x/5 - 2/5)
*(4*x - log(x + 2*log(3))*(4*x + 2*log(3)*(2*x + 4) - exp(x)*(2*x + 4*log(3)) + 2*x^2) - 2*x*exp(x) + 2*x^2) -
 2*x^2*exp(x) + 3*x^3 + x^4 + 2*log(3)*(x^2 + x^3))/(2*log(3)*(2*x^2 + x^3) - exp(x)*(2*x^2*log(3) + x^3) + 2*
x^3 + x^4), x)

________________________________________________________________________________________

sympy [A]  time = 0.84, size = 44, normalized size = 1.33 \begin {gather*} - x - 2 \log {\left (x + 2 \log {\relax (3 )} \right )} + \log {\left (- x + e^{x} - 2 \right )} + \frac {2 \log {\left (x + 2 \log {\relax (3 )} \right )} \log {\left (- \frac {x}{5} + \frac {e^{x}}{5} - \frac {2}{5} \right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-4*ln(3)-2*x)*exp(x)+2*(2*x+4)*ln(3)+2*x**2+4*x)*ln(2*ln(3)+x)+2*exp(x)*x-2*x**2-4*x)*ln(1/5*exp
(x)-2/5-1/5*x)+((4*x*ln(3)+2*x**2)*exp(x)-4*x*ln(3)-2*x**2)*ln(2*ln(3)+x)-2*exp(x)*x**2+2*(x**3+x**2)*ln(3)+x*
*4+3*x**3+4*x**2)/((2*x**2*ln(3)+x**3)*exp(x)+2*(-x**3-2*x**2)*ln(3)-x**4-2*x**3),x)

[Out]

-x - 2*log(x + 2*log(3)) + log(-x + exp(x) - 2) + 2*log(x + 2*log(3))*log(-x/5 + exp(x)/5 - 2/5)/x

________________________________________________________________________________________