Optimal. Leaf size=28 \[ x \log \left (2 e^2-2 x-\log (5)+\frac {e^2-\log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+e^2+2 x^2-\log (x)+\left (e^2 (-1-2 x)+2 x^2+x \log (5)+\log (x)\right ) \log \left (\frac {-2 x^2+e^2 (1+2 x)-x \log (5)-\log (x)}{x}\right )}{e^2 (-1-2 x)+2 x^2+x \log (5)+\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-e^2-2 x^2+\log (x)}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)}+\log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right )\right ) \, dx\\ &=\int \frac {-1-e^2-2 x^2+\log (x)}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)} \, dx+\int \log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right ) \, dx\\ &=\int \left (-1+\frac {-1-4 x^2+x \left (2 e^2-\log (5)\right )}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)}\right ) \, dx+\int \log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right ) \, dx\\ &=-x+\int \frac {-1-4 x^2+x \left (2 e^2-\log (5)\right )}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)} \, dx+\int \log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right ) \, dx\\ &=-x+\int \left (\frac {x \left (2 e^2-\log (5)\right )}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)}+\frac {1}{-e^2+2 x^2-2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )+\log (x)}+\frac {4 x^2}{-e^2+2 x^2-2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )+\log (x)}\right ) \, dx+\int \log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right ) \, dx\\ &=-x+4 \int \frac {x^2}{-e^2+2 x^2-2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )+\log (x)} \, dx+\left (2 e^2-\log (5)\right ) \int \frac {x}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)} \, dx+\int \frac {1}{-e^2+2 x^2-2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )+\log (x)} \, dx+\int \log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right ) \, dx\\ &=-x+4 \int \frac {x^2}{-e^2 (1+2 x)+x (2 x+\log (5))+\log (x)} \, dx+\left (2 e^2-\log (5)\right ) \int \frac {x}{e^2-2 x^2+2 e^2 x \left (1-\frac {\log (5)}{2 e^2}\right )-\log (x)} \, dx+\int \frac {1}{-e^2 (1+2 x)+x (2 x+\log (5))+\log (x)} \, dx+\int \log \left (-2 x+\frac {e^2 (1+2 x)}{x}-\log (5)-\frac {\log (x)}{x}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 29, normalized size = 1.04 \begin {gather*} x \log \left (-\frac {-e^2 (1+2 x)+x (2 x+\log (5))+\log (x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 29, normalized size = 1.04 \begin {gather*} x \log \left (-\frac {2 \, x^{2} - {\left (2 \, x + 1\right )} e^{2} + x \log \relax (5) + \log \relax (x)}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 31, normalized size = 1.11 \begin {gather*} x \log \left (-2 \, x^{2} + 2 \, x e^{2} - x \log \relax (5) + e^{2} - \log \relax (x)\right ) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 31, normalized size = 1.11
method | result | size |
norman | \(x \ln \left (\frac {-\ln \relax (x )-x \ln \relax (5)+\left (2 x +1\right ) {\mathrm e}^{2}-2 x^{2}}{x}\right )\) | \(31\) |
risch | \(\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )}{x}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )}{x}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )}{x}\right )}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )}{x}\right )^{3}}{2}+x \ln \relax (2)-x \ln \relax (x )+x \ln \left (\left (\frac {1}{2}+x \right ) {\mathrm e}^{2}-\frac {x \ln \relax (5)}{2}-x^{2}-\frac {\ln \relax (x )}{2}\right )\) | \(237\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 32, normalized size = 1.14 \begin {gather*} x \log \left (-2 \, x^{2} + x {\left (2 \, e^{2} - \log \relax (5)\right )} + e^{2} - \log \relax (x)\right ) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.71, size = 29, normalized size = 1.04 \begin {gather*} x\,\ln \left (-\frac {\ln \relax (x)+x\,\ln \relax (5)+2\,x^2-{\mathrm {e}}^2\,\left (2\,x+1\right )}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 26, normalized size = 0.93 \begin {gather*} x \log {\left (\frac {- 2 x^{2} - x \log {\relax (5 )} + \left (2 x + 1\right ) e^{2} - \log {\relax (x )}}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________