Optimal. Leaf size=26 \[ \left (-e^{\left (-4+e^5\right )^x}+e^{\frac {2 e^{-x} x}{5}}\right ) x \]
________________________________________________________________________________________
Rubi [F] time = 0.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} e^{-x} \left (e^{\frac {2 e^{-x} x}{5}} \left (5 e^x+2 x-2 x^2\right )+e^{\left (-4+e^5\right )^x} \left (-5 e^x-5 \left (e \left (-4+e^5\right )\right )^x x \log \left (-4+e^5\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{-x} \left (e^{\frac {2 e^{-x} x}{5}} \left (5 e^x+2 x-2 x^2\right )+e^{\left (-4+e^5\right )^x} \left (-5 e^x-5 \left (e \left (-4+e^5\right )\right )^x x \log \left (-4+e^5\right )\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (e^{-x+\frac {2 e^{-x} x}{5}} \left (5 e^x+2 x-2 x^2\right )-5 e^{\left (-4+e^5\right )^x-x} \left (e^x+\left (e \left (-4+e^5\right )\right )^x x \log \left (-4+e^5\right )\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} \left (5 e^x+2 x-2 x^2\right ) \, dx-\int e^{\left (-4+e^5\right )^x-x} \left (e^x+\left (e \left (-4+e^5\right )\right )^x x \log \left (-4+e^5\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (5 e^{\frac {2 e^{-x} x}{5}}+2 e^{-x+\frac {2 e^{-x} x}{5}} x-2 e^{-x+\frac {2 e^{-x} x}{5}} x^2\right ) \, dx-\int \left (e^{\left (-4+e^5\right )^x}+e^{\left (-4+e^5\right )^x} \left (-4+e^5\right )^x x \log \left (-4+e^5\right )\right ) \, dx\\ &=\frac {2}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} x \, dx-\frac {2}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} x^2 \, dx-\log \left (-4+e^5\right ) \int e^{\left (-4+e^5\right )^x} \left (-4+e^5\right )^x x \, dx-\int e^{\left (-4+e^5\right )^x} \, dx+\int e^{\frac {2 e^{-x} x}{5}} \, dx\\ &=\frac {2}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} x \, dx-\frac {2}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} x^2 \, dx-\frac {\operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,\left (-4+e^5\right )^x\right )}{\log \left (-4+e^5\right )}-\log \left (-4+e^5\right ) \int e^{\left (-4+e^5\right )^x} \left (-4+e^5\right )^x x \, dx+\int e^{\frac {2 e^{-x} x}{5}} \, dx\\ &=-\frac {\text {Ei}\left (\left (-4+e^5\right )^x\right )}{\log \left (-4+e^5\right )}+\frac {2}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} x \, dx-\frac {2}{5} \int e^{-x+\frac {2 e^{-x} x}{5}} x^2 \, dx-\log \left (-4+e^5\right ) \int e^{\left (-4+e^5\right )^x} \left (-4+e^5\right )^x x \, dx+\int e^{\frac {2 e^{-x} x}{5}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.64, size = 85, normalized size = 3.27 \begin {gather*} \frac {1}{5} \left (5 e^{\frac {2 e^{-x} x}{5}} x-\frac {5 \text {Ei}\left (\left (-4+e^5\right )^x\right )}{\log \left (-4+e^5\right )}\right )-\left (-\frac {\text {Ei}\left (\left (-4+e^5\right )^x\right )}{\log ^2\left (-4+e^5\right )}+\frac {e^{\left (-4+e^5\right )^x} x}{\log \left (-4+e^5\right )}\right ) \log \left (-4+e^5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 21, normalized size = 0.81 \begin {gather*} x e^{\left (\frac {2}{5} \, x e^{\left (-x\right )}\right )} - x e^{\left ({\left (e^{5} - 4\right )}^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{5} \, {\left ({\left (2 \, x^{2} - 2 \, x - 5 \, e^{x}\right )} e^{\left (\frac {2}{5} \, x e^{\left (-x\right )}\right )} + 5 \, {\left (x {\left (e^{5} - 4\right )}^{x} e^{x} \log \left (e^{5} - 4\right ) + e^{x}\right )} e^{\left ({\left (e^{5} - 4\right )}^{x}\right )}\right )} e^{\left (-x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 0.85
method | result | size |
risch | \({\mathrm e}^{\frac {2 x \,{\mathrm e}^{-x}}{5}} x -x \,{\mathrm e}^{\left ({\mathrm e}^{5}-4\right )^{x}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int x e^{\left (x \log \left (e^{5} - 4\right ) + {\left (e^{5} - 4\right )}^{x}\right )}\,{d x} \log \left (e^{5} - 4\right ) - \frac {{\rm Ei}\left ({\left (e^{5} - 4\right )}^{x}\right )}{\log \left (e^{5} - 4\right )} + \frac {1}{5} \, \int -{\left (2 \, x^{2} - 2 \, x - 5 \, e^{x}\right )} e^{\left (\frac {2}{5} \, x e^{\left (-x\right )} - x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.23, size = 21, normalized size = 0.81 \begin {gather*} -x\,\left ({\mathrm {e}}^{{\left ({\mathrm {e}}^5-4\right )}^x}-{\mathrm {e}}^{\frac {2\,x\,{\mathrm {e}}^{-x}}{5}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________