Optimal. Leaf size=28 \[ -4-x+e^{-\frac {3 x}{5-3 e^{14} x^2}} (-4+2 x) \]
________________________________________________________________________________________
Rubi [F] time = 4.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3 x}{-5+3 e^{14} x^2}} \left (110-30 x+18 e^{28} x^4+e^{14} \left (-24 x^2-18 x^3\right )+e^{-\frac {3 x}{-5+3 e^{14} x^2}} \left (-25+30 e^{14} x^2-9 e^{28} x^4\right )\right )}{25-30 e^{14} x^2+9 e^{28} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (9 e^{28}\right ) \int \frac {e^{\frac {3 x}{-5+3 e^{14} x^2}} \left (110-30 x+18 e^{28} x^4+e^{14} \left (-24 x^2-18 x^3\right )+e^{-\frac {3 x}{-5+3 e^{14} x^2}} \left (-25+30 e^{14} x^2-9 e^{28} x^4\right )\right )}{\left (-15 e^{14}+9 e^{28} x^2\right )^2} \, dx\\ &=\left (9 e^{28}\right ) \int \left (-\frac {1}{9} \exp \left (-28+\frac {3 x}{5-3 e^{14} x^2}+\frac {3 x}{-5+3 e^{14} x^2}\right )+\frac {110 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{9 \left (-5+3 e^{14} x^2\right )^2}-\frac {10 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{3 \left (-5+3 e^{14} x^2\right )^2}+\frac {2 e^{\frac {3 x}{-5+3 e^{14} x^2}} x^4}{\left (-5+3 e^{14} x^2\right )^2}-\frac {2 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}} x^2 (4+3 x)}{3 \left (-5+3 e^{14} x^2\right )^2}\right ) \, dx\\ &=-\left (e^{28} \int \exp \left (-28+\frac {3 x}{5-3 e^{14} x^2}+\frac {3 x}{-5+3 e^{14} x^2}\right ) \, dx\right )-\left (6 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}} x^2 (4+3 x)}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\left (18 e^{28}\right ) \int \frac {e^{\frac {3 x}{-5+3 e^{14} x^2}} x^4}{\left (-5+3 e^{14} x^2\right )^2} \, dx-\left (30 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\left (110 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (-5+3 e^{14} x^2\right )^2} \, dx\\ &=-\left (e^{28} \int \frac {1}{e^{28}} \, dx\right )-\left (6 e^{28}\right ) \int \left (\frac {5 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} (4+3 x)}{3 \left (-5+3 e^{14} x^2\right )^2}+\frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} (4+3 x)}{3 \left (-5+3 e^{14} x^2\right )}\right ) \, dx+\left (18 e^{28}\right ) \int \left (\frac {1}{9} e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}+\frac {25 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{9 \left (-5+3 e^{14} x^2\right )^2}+\frac {10 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{9 \left (-5+3 e^{14} x^2\right )}\right ) \, dx-\left (30 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\left (110 e^{28}\right ) \int \left (\frac {3 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{20 \left (\sqrt {15} e^7-3 e^{14} x\right )^2}+\frac {3 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{20 \left (\sqrt {15} e^7+3 e^{14} x\right )^2}+\frac {3 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{10 \left (15 e^{14}-9 e^{28} x^2\right )}\right ) \, dx\\ &=-x+\left (2 e^{28}\right ) \int e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} \, dx-\left (2 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} (4+3 x)}{-5+3 e^{14} x^2} \, dx-\left (10 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} (4+3 x)}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\frac {1}{2} \left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7-3 e^{14} x\right )^2} \, dx+\frac {1}{2} \left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7+3 e^{14} x\right )^2} \, dx+\left (20 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{-5+3 e^{14} x^2} \, dx-\left (30 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{15 e^{14}-9 e^{28} x^2} \, dx+\left (50 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (-5+3 e^{14} x^2\right )^2} \, dx\\ &=-x+\left (2 e^{28}\right ) \int e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} \, dx-\left (2 e^{28}\right ) \int \left (-\frac {\left (4 \sqrt {5}+\frac {5 \sqrt {3}}{e^7}\right ) e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{10 \left (\sqrt {5}-\sqrt {3} e^7 x\right )}-\frac {\left (4 \sqrt {5}-\frac {5 \sqrt {3}}{e^7}\right ) e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{10 \left (\sqrt {5}+\sqrt {3} e^7 x\right )}\right ) \, dx-\left (10 e^{28}\right ) \int \left (\frac {4 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (-5+3 e^{14} x^2\right )^2}+\frac {3 e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{\left (-5+3 e^{14} x^2\right )^2}\right ) \, dx+\frac {1}{2} \left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7-3 e^{14} x\right )^2} \, dx+\frac {1}{2} \left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7+3 e^{14} x\right )^2} \, dx+\left (20 e^{28}\right ) \int \left (-\frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{2 \sqrt {5} \left (\sqrt {5}-\sqrt {3} e^7 x\right )}-\frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{2 \sqrt {5} \left (\sqrt {5}+\sqrt {3} e^7 x\right )}\right ) \, dx-\left (30 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\left (33 e^{28}\right ) \int \left (\frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{6 \sqrt {5} \left (\sqrt {5}-\sqrt {3} e^7 x\right )}+\frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{6 \sqrt {5} \left (\sqrt {5}+\sqrt {3} e^7 x\right )}\right ) \, dx+\left (50 e^{28}\right ) \int \left (\frac {3 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{20 \left (\sqrt {15} e^7-3 e^{14} x\right )^2}+\frac {3 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{20 \left (\sqrt {15} e^7+3 e^{14} x\right )^2}+\frac {3 e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{10 \left (15 e^{14}-9 e^{28} x^2\right )}\right ) \, dx\\ &=-x+\left (2 e^{28}\right ) \int e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} \, dx+\frac {1}{2} \left (15 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7-3 e^{14} x\right )^2} \, dx+\frac {1}{2} \left (15 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7+3 e^{14} x\right )^2} \, dx+\left (15 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{15 e^{14}-9 e^{28} x^2} \, dx+\frac {1}{2} \left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7-3 e^{14} x\right )^2} \, dx+\frac {1}{2} \left (33 e^{28}\right ) \int \frac {e^{-14+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (\sqrt {15} e^7+3 e^{14} x\right )^2} \, dx-2 \left (\left (30 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}} x}{\left (-5+3 e^{14} x^2\right )^2} \, dx\right )-\left (40 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\left (-5+3 e^{14} x^2\right )^2} \, dx+\frac {\left (11 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\sqrt {5}-\sqrt {3} e^7 x} \, dx}{2 \sqrt {5}}+\frac {\left (11 e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\sqrt {5}+\sqrt {3} e^7 x} \, dx}{2 \sqrt {5}}-\left (2 \sqrt {5} e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\sqrt {5}-\sqrt {3} e^7 x} \, dx-\left (2 \sqrt {5} e^{28}\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\sqrt {5}+\sqrt {3} e^7 x} \, dx-\frac {\left (e^{21} \left (\sqrt {15}-4 e^7\right )\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\sqrt {5}+\sqrt {3} e^7 x} \, dx}{\sqrt {5}}+\frac {\left (e^{21} \left (\sqrt {15}+4 e^7\right )\right ) \int \frac {e^{-28+\frac {3 x}{-5+3 e^{14} x^2}}}{\sqrt {5}-\sqrt {3} e^7 x} \, dx}{\sqrt {5}}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 0.96 \begin {gather*} -x+e^{\frac {3 x}{-5+3 e^{14} x^2}} (-4+2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 24, normalized size = 0.86 \begin {gather*} 2 \, {\left (x - 2\right )} e^{\left (\frac {3 \, x}{3 \, x^{2} e^{14} - 5}\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 39, normalized size = 1.39 \begin {gather*} 2 \, x e^{\left (\frac {3 \, x}{3 \, x^{2} e^{14} - 5}\right )} - x - 4 \, e^{\left (\frac {3 \, x}{3 \, x^{2} e^{14} - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.56, size = 26, normalized size = 0.93
method | result | size |
risch | \(-x +\left (2 x -4\right ) {\mathrm e}^{\frac {3 x}{3 x^{2} {\mathrm e}^{14}-5}}\) | \(26\) |
norman | \(\frac {\left (20-10 x +5 x \,{\mathrm e}^{-\frac {3 x}{3 x^{2} {\mathrm e}^{14}-5}}-12 x^{2} {\mathrm e}^{14}+6 \,{\mathrm e}^{14} x^{3}-3 \,{\mathrm e}^{14} x^{3} {\mathrm e}^{-\frac {3 x}{3 x^{2} {\mathrm e}^{14}-5}}\right ) {\mathrm e}^{\frac {3 x}{3 x^{2} {\mathrm e}^{14}-5}}}{3 x^{2} {\mathrm e}^{14}-5}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{12} \, \sqrt {15} e^{\left (-7\right )} \log \left (\frac {3 \, x e^{14} - \sqrt {15} e^{7}}{3 \, x e^{14} + \sqrt {15} e^{7}}\right ) - \frac {1}{4} \, {\left (\sqrt {15} e^{\left (-35\right )} \log \left (\frac {3 \, x e^{14} - \sqrt {15} e^{7}}{3 \, x e^{14} + \sqrt {15} e^{7}}\right ) + 4 \, x e^{\left (-28\right )} - \frac {10 \, x}{3 \, x^{2} e^{42} - 5 \, e^{28}}\right )} e^{28} + \frac {1}{6} \, {\left (\sqrt {15} e^{\left (-21\right )} \log \left (\frac {3 \, x e^{14} - \sqrt {15} e^{7}}{3 \, x e^{14} + \sqrt {15} e^{7}}\right ) - \frac {30 \, x}{3 \, x^{2} e^{28} - 5 \, e^{14}}\right )} e^{14} + 2 \, x e^{\left (\frac {3 \, x}{3 \, x^{2} e^{14} - 5}\right )} + \frac {5 \, x}{2 \, {\left (3 \, x^{2} e^{14} - 5\right )}} + \int \frac {12 \, {\left (3 \, x^{2} e^{14} + 5\right )} e^{\left (\frac {3 \, x}{3 \, x^{2} e^{14} - 5}\right )}}{9 \, x^{4} e^{28} - 30 \, x^{2} e^{14} + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.32, size = 25, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{\frac {3\,x}{3\,x^2\,{\mathrm {e}}^{14}-5}}\,\left (2\,x-4\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 20, normalized size = 0.71 \begin {gather*} - x + \left (2 x - 4\right ) e^{\frac {3 x}{3 x^{2} e^{14} - 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________