Optimal. Leaf size=19 \[ e^x \left (-5+e^{(-2+\log (4+\log (-2+x)))^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 8.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (40-20 x)+e^x (10-5 x) \log (-2+x)+\frac {e^{4+\log ^2(4+\log (-2+x))} \left (e^x (-12+4 x)+e^x (-2+x) \log (-2+x)+2 e^x \log (4+\log (-2+x))\right )}{(4+\log (-2+x))^4}}{-8+4 x+(-2+x) \log (-2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^x (40-20 x)-e^x (10-5 x) \log (-2+x)-\frac {e^{4+\log ^2(4+\log (-2+x))} \left (e^x (-12+4 x)+e^x (-2+x) \log (-2+x)+2 e^x \log (4+\log (-2+x))\right )}{(4+\log (-2+x))^4}}{(2-x) (4+\log (-2+x))} \, dx\\ &=\int \left (-5 e^x+\frac {e^{4+x+\log ^2(4+\log (-2+x))} (-12+4 x-2 \log (-2+x)+x \log (-2+x)+2 \log (4+\log (-2+x)))}{(-2+x) (4+\log (-2+x))^5}\right ) \, dx\\ &=-\left (5 \int e^x \, dx\right )+\int \frac {e^{4+x+\log ^2(4+\log (-2+x))} (-12+4 x-2 \log (-2+x)+x \log (-2+x)+2 \log (4+\log (-2+x)))}{(-2+x) (4+\log (-2+x))^5} \, dx\\ &=-5 e^x+\int \left (-\frac {12 e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5}+\frac {4 e^{4+x+\log ^2(4+\log (-2+x))} x}{(-2+x) (4+\log (-2+x))^5}-\frac {2 e^{4+x+\log ^2(4+\log (-2+x))} \log (-2+x)}{(-2+x) (4+\log (-2+x))^5}+\frac {e^{4+x+\log ^2(4+\log (-2+x))} x \log (-2+x)}{(-2+x) (4+\log (-2+x))^5}+\frac {2 e^{4+x+\log ^2(4+\log (-2+x))} \log (4+\log (-2+x))}{(-2+x) (4+\log (-2+x))^5}\right ) \, dx\\ &=-5 e^x-2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} \log (-2+x)}{(-2+x) (4+\log (-2+x))^5} \, dx+2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} \log (4+\log (-2+x))}{(-2+x) (4+\log (-2+x))^5} \, dx+4 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} x}{(-2+x) (4+\log (-2+x))^5} \, dx-12 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx+\int \frac {e^{4+x+\log ^2(4+\log (-2+x))} x \log (-2+x)}{(-2+x) (4+\log (-2+x))^5} \, dx\\ &=-5 e^x-2 \int \left (-\frac {4 e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5}+\frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^4}\right ) \, dx+2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} \log (4+\log (-2+x))}{(-2+x) (4+\log (-2+x))^5} \, dx+4 \int \left (\frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^5}+\frac {2 e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5}\right ) \, dx-12 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx+\int \left (-\frac {4 e^{4+x+\log ^2(4+\log (-2+x))} x}{(-2+x) (4+\log (-2+x))^5}+\frac {e^{4+x+\log ^2(4+\log (-2+x))} x}{(-2+x) (4+\log (-2+x))^4}\right ) \, dx\\ &=-5 e^x-2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^4} \, dx+2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} \log (4+\log (-2+x))}{(-2+x) (4+\log (-2+x))^5} \, dx+4 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^5} \, dx-4 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} x}{(-2+x) (4+\log (-2+x))^5} \, dx+2 \left (8 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx\right )-12 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx+\int \frac {e^{4+x+\log ^2(4+\log (-2+x))} x}{(-2+x) (4+\log (-2+x))^4} \, dx\\ &=-5 e^x-2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^4} \, dx+2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} \log (4+\log (-2+x))}{(-2+x) (4+\log (-2+x))^5} \, dx+4 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^5} \, dx-4 \int \left (\frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^5}+\frac {2 e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5}\right ) \, dx+2 \left (8 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx\right )-12 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx+\int \left (\frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^4}+\frac {2 e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^4}\right ) \, dx\\ &=-5 e^x+2 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))} \log (4+\log (-2+x))}{(-2+x) (4+\log (-2+x))^5} \, dx+8 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx-12 \int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(-2+x) (4+\log (-2+x))^5} \, dx+\int \frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.48, size = 29, normalized size = 1.53 \begin {gather*} -5 e^x+\frac {e^{4+x+\log ^2(4+\log (-2+x))}}{(4+\log (-2+x))^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 27, normalized size = 1.42 \begin {gather*} e^{\left (\log \left (\log \left (x - 2\right ) + 4\right )^{2} + x - 4 \, \log \left (\log \left (x - 2\right ) + 4\right ) + 4\right )} - 5 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.92, size = 92, normalized size = 4.84 \begin {gather*} -\frac {5 \, e^{x} \log \left (x - 2\right )^{4} + 80 \, e^{x} \log \left (x - 2\right )^{3} + 480 \, e^{x} \log \left (x - 2\right )^{2} + 1280 \, e^{x} \log \left (x - 2\right ) - e^{\left (\log \left (\log \left (x - 2\right ) + 4\right )^{2} + x + 4\right )} + 1280 \, e^{x}}{\log \left (x - 2\right )^{4} + 16 \, \log \left (x - 2\right )^{3} + 96 \, \log \left (x - 2\right )^{2} + 256 \, \log \left (x - 2\right ) + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 28, normalized size = 1.47
method | result | size |
risch | \(\frac {{\mathrm e}^{x +\ln \left (\ln \left (x -2\right )+4\right )^{2}+4}}{\left (\ln \left (x -2\right )+4\right )^{4}}-5 \,{\mathrm e}^{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 92, normalized size = 4.84 \begin {gather*} -\frac {5 \, e^{x} \log \left (x - 2\right )^{4} + 80 \, e^{x} \log \left (x - 2\right )^{3} + 480 \, e^{x} \log \left (x - 2\right )^{2} + 1280 \, e^{x} \log \left (x - 2\right ) - e^{\left (\log \left (\log \left (x - 2\right ) + 4\right )^{2} + x + 4\right )} + 1280 \, e^{x}}{\log \left (x - 2\right )^{4} + 16 \, \log \left (x - 2\right )^{3} + 96 \, \log \left (x - 2\right )^{2} + 256 \, \log \left (x - 2\right ) + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.21, size = 58, normalized size = 3.05 \begin {gather*} -\frac {{\mathrm {e}}^x\,\left (1280\,\ln \left (x-2\right )-{\mathrm {e}}^4\,{\mathrm {e}}^{{\ln \left (\ln \left (x-2\right )+4\right )}^2}+480\,{\ln \left (x-2\right )}^2+80\,{\ln \left (x-2\right )}^3+5\,{\ln \left (x-2\right )}^4+1280\right )}{{\left (\ln \left (x-2\right )+4\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.98, size = 53, normalized size = 2.79 \begin {gather*} - 5 e^{x} + \frac {e^{x} e^{\log {\left (\log {\left (x - 2 \right )} + 4 \right )}^{2} + 4}}{\log {\left (x - 2 \right )}^{4} + 16 \log {\left (x - 2 \right )}^{3} + 96 \log {\left (x - 2 \right )}^{2} + 256 \log {\left (x - 2 \right )} + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________