Optimal. Leaf size=28 \[ 3+\frac {4}{2+2 e^{-5+e^x-x} (4-x)}-x \]
________________________________________________________________________________________
Rubi [F] time = 8.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+e^{-10+2 e^x-2 x} \left (-16+8 x-x^2\right )+e^{-5+e^x-x} \left (2+e^x (-8+2 x)\right )}{1+e^{-5+e^x-x} (8-2 x)+e^{-10+2 e^x-2 x} \left (16-8 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{10+2 x} \left (-1+e^{-10+2 e^x-2 x} \left (-16+8 x-x^2\right )+e^{-5+e^x-x} \left (2+e^x (-8+2 x)\right )\right )}{\left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2} \, dx\\ &=\int \left (-1-\frac {2 e^{5-e^x+x} (-5+x)}{(-4+x)^2}-\frac {2 e^{10-e^x+2 x} (-5+x)}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )}-\frac {2 e^{5+2 x} \left (-5 e^5-16 e^{e^x}+e^5 x+8 e^{e^x} x-e^{e^x} x^2\right )}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2}\right ) \, dx\\ &=-x-2 \int \frac {e^{5-e^x+x} (-5+x)}{(-4+x)^2} \, dx-2 \int \frac {e^{10-e^x+2 x} (-5+x)}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \frac {e^{5+2 x} \left (-5 e^5-16 e^{e^x}+e^5 x+8 e^{e^x} x-e^{e^x} x^2\right )}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2} \, dx\\ &=-x-2 \int \left (-\frac {e^{5-e^x+x}}{(-4+x)^2}+\frac {e^{5-e^x+x}}{-4+x}\right ) \, dx-2 \int \frac {e^{5+2 x} \left (-e^5 (-5+x)+e^{e^x} (-4+x)^2\right )}{\left (e^{5+x}-e^{e^x} (-4+x)\right )^2 (4-x)} \, dx-2 \int \left (-\frac {e^{10-e^x+2 x}}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )}+\frac {e^{10-e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )}\right ) \, dx\\ &=-x+2 \int \frac {e^{5-e^x+x}}{(-4+x)^2} \, dx-2 \int \frac {e^{5-e^x+x}}{-4+x} \, dx+2 \int \frac {e^{10-e^x+2 x}}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \frac {e^{10-e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \left (-\frac {5 e^{10+2 x}}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2}+\frac {e^{10+2 x} x}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2}-\frac {16 e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}+\frac {8 e^{5+e^x+2 x} x}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}-\frac {e^{5+e^x+2 x} x^2}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}\right ) \, dx\\ &=-x+2 \int \frac {e^{5-e^x+x}}{(-4+x)^2} \, dx-2 \int \frac {e^{5-e^x+x}}{-4+x} \, dx-2 \int \frac {e^{10+2 x} x}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2} \, dx+2 \int \frac {e^{5+e^x+2 x} x^2}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx+2 \int \frac {e^{10-e^x+2 x}}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \frac {e^{10-e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx+10 \int \frac {e^{10+2 x}}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2} \, dx-16 \int \frac {e^{5+e^x+2 x} x}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx+32 \int \frac {e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx\\ &=-x+2 \int \frac {e^{5-e^x+x}}{(-4+x)^2} \, dx-2 \int \frac {e^{5-e^x+x}}{-4+x} \, dx+2 \int \frac {e^{10-e^x+2 x}}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \frac {e^{10-e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \left (\frac {e^{10+2 x}}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}+\frac {4 e^{10+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}\right ) \, dx+2 \int \left (\frac {4 e^{5+e^x+2 x}}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}+\frac {16 e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}+\frac {e^{5+e^x+2 x} x}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}\right ) \, dx+10 \int \frac {e^{10+2 x}}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2} \, dx-16 \int \left (\frac {e^{5+e^x+2 x}}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}+\frac {4 e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2}\right ) \, dx+32 \int \frac {e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx\\ &=-x+2 \int \frac {e^{5-e^x+x}}{(-4+x)^2} \, dx-2 \int \frac {e^{5-e^x+x}}{-4+x} \, dx-2 \int \frac {e^{10+2 x}}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx+2 \int \frac {e^{5+e^x+2 x} x}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx+2 \int \frac {e^{10-e^x+2 x}}{(-4+x)^2 \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx-2 \int \frac {e^{10-e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )} \, dx+8 \int \frac {e^{5+e^x+2 x}}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx-8 \int \frac {e^{10+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx+10 \int \frac {e^{10+2 x}}{(-4+x) \left (4 e^{e^x}+e^{5+x}-e^{e^x} x\right )^2} \, dx-16 \int \frac {e^{5+e^x+2 x}}{\left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx+2 \left (32 \int \frac {e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx\right )-64 \int \frac {e^{5+e^x+2 x}}{(-4+x) \left (-4 e^{e^x}-e^{5+x}+e^{e^x} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.64, size = 30, normalized size = 1.07 \begin {gather*} -\frac {2 e^{5+x}}{-e^{5+x}+e^{e^x} (-4+x)}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 39, normalized size = 1.39 \begin {gather*} -\frac {{\left (x^{2} - 4 \, x\right )} e^{\left (-x + e^{x} - 5\right )} - x + 2}{{\left (x - 4\right )} e^{\left (-x + e^{x} - 5\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.70, size = 1136, normalized size = 40.57 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 31, normalized size = 1.11
method | result | size |
risch | \(-x -\frac {2}{{\mathrm e}^{{\mathrm e}^{x}-5-x} x -4 \,{\mathrm e}^{{\mathrm e}^{x}-5-x}-1}\) | \(31\) |
norman | \(\frac {x +8 \,{\mathrm e}^{{\mathrm e}^{x}-5-x}+2 \,{\mathrm e}^{{\mathrm e}^{x}-5-x} x -x^{2} {\mathrm e}^{{\mathrm e}^{x}-5-x}}{{\mathrm e}^{{\mathrm e}^{x}-5-x} x -4 \,{\mathrm e}^{{\mathrm e}^{x}-5-x}-1}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 42, normalized size = 1.50 \begin {gather*} \frac {{\left (x e^{5} - 2 \, e^{5}\right )} e^{x} - {\left (x^{2} - 4 \, x\right )} e^{\left (e^{x}\right )}}{{\left (x - 4\right )} e^{\left (e^{x}\right )} - e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^x-2\,x-10}\,\left (x^2-8\,x+16\right )-{\mathrm {e}}^{{\mathrm {e}}^x-x-5}\,\left ({\mathrm {e}}^x\,\left (2\,x-8\right )+2\right )+1}{{\mathrm {e}}^{2\,{\mathrm {e}}^x-2\,x-10}\,\left (x^2-8\,x+16\right )-{\mathrm {e}}^{{\mathrm {e}}^x-x-5}\,\left (2\,x-8\right )+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 17, normalized size = 0.61 \begin {gather*} - x - \frac {2}{\left (x - 4\right ) e^{- x + e^{x} - 5} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________