Optimal. Leaf size=28 \[ 2^{\frac {5}{\left (4+e^{\left (3-x-\frac {4 x}{-1+x}\right )^2}\right ) x}} \]
________________________________________________________________________________________
Rubi [F] time = 22.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2^{\frac {5}{4 x+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} x}} \left (\left (20-60 x+60 x^2-20 x^3\right ) \log (2)+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} \left (5+75 x+75 x^2-5 x^3+20 x^4-10 x^5\right ) \log (2)\right )}{-16 x^2+48 x^3-48 x^4+16 x^5+e^{\frac {2 \left (9+6 x^2+x^4\right )}{1-2 x+x^2}} \left (-x^2+3 x^3-3 x^4+x^5\right )+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} \left (-8 x^2+24 x^3-24 x^4+8 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5\ 2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (4 (-1+x)^3+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )\right ) \log (2)}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (1-x)^3 x^2} \, dx\\ &=(5 \log (2)) \int \frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (4 (-1+x)^3+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (1-x)^3 x^2} \, dx\\ &=(5 \log (2)) \int \left (\frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-9-6 x-2 x^3+x^4\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3 x}-\frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3 x^2}\right ) \, dx\\ &=(5 \log (2)) \int \frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-9-6 x-2 x^3+x^4\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3 x} \, dx-(5 \log (2)) \int \frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3 x^2} \, dx\\ &=(5 \log (2)) \int \left (\frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2}-\frac {2^{7+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3}+\frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^2}-\frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)}+\frac {9\ 2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 x}\right ) \, dx-(5 \log (2)) \int \left (\frac {2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}}-\frac {2^{5+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3}+\frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^2}-\frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)}+\frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x^2}+\frac {9\ 2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}\right ) \, dx\\ &=(5 \log (2)) \int \frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2} \, dx-(5 \log (2)) \int \frac {2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}} \, dx-(5 \log (2)) \int \frac {2^{7+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3} \, dx+(5 \log (2)) \int \frac {2^{5+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3} \, dx+(5 \log (2)) \int \frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^2} \, dx-(5 \log (2)) \int \frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^2} \, dx-(5 \log (2)) \int \frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)} \, dx+(5 \log (2)) \int \frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)} \, dx-(5 \log (2)) \int \frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x^2} \, dx+(45 \log (2)) \int \frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 x} \, dx-(45 \log (2)) \int \frac {2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 34, normalized size = 1.21 \begin {gather*} \frac {5\ 2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \log (2)}{\log (32)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 34, normalized size = 1.21 \begin {gather*} 2^{\frac {5}{x e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )} + 4 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left ({\left (2 \, x^{5} - 4 \, x^{4} + x^{3} - 15 \, x^{2} - 15 \, x - 1\right )} e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )} \log \relax (2) + 4 \, {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )} \log \relax (2)\right )} 2^{\frac {5}{x e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )} + 4 \, x}}}{16 \, x^{5} - 48 \, x^{4} + 48 \, x^{3} - 16 \, x^{2} + {\left (x^{5} - 3 \, x^{4} + 3 \, x^{3} - x^{2}\right )} e^{\left (\frac {2 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}}{x^{2} - 2 \, x + 1}\right )} + 8 \, {\left (x^{5} - 3 \, x^{4} + 3 \, x^{3} - x^{2}\right )} e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 25, normalized size = 0.89
method | result | size |
risch | \(32^{\frac {1}{x \left ({\mathrm e}^{\frac {\left (x^{2}+3\right )^{2}}{\left (x -1\right )^{2}}}+4\right )}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 40, normalized size = 1.43 \begin {gather*} 2^{\frac {5}{x e^{\left (x^{2} + 2 \, x + \frac {16}{x^{2} - 2 \, x + 1} + \frac {16}{x - 1} + 9\right )} + 4 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 56, normalized size = 2.00 \begin {gather*} 2^{\frac {5}{4\,x+x\,{\mathrm {e}}^{\frac {x^4}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {6\,x^2}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {9}{x^2-2\,x+1}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.87, size = 31, normalized size = 1.11 \begin {gather*} e^{\frac {5 \log {\relax (2 )}}{x e^{\frac {x^{4} + 6 x^{2} + 9}{x^{2} - 2 x + 1}} + 4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________