3.10.42 \(\int \frac {2^{\frac {5}{4 x+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} x}} ((20-60 x+60 x^2-20 x^3) \log (2)+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} (5+75 x+75 x^2-5 x^3+20 x^4-10 x^5) \log (2))}{-16 x^2+48 x^3-48 x^4+16 x^5+e^{\frac {2 (9+6 x^2+x^4)}{1-2 x+x^2}} (-x^2+3 x^3-3 x^4+x^5)+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} (-8 x^2+24 x^3-24 x^4+8 x^5)} \, dx\)

Optimal. Leaf size=28 \[ 2^{\frac {5}{\left (4+e^{\left (3-x-\frac {4 x}{-1+x}\right )^2}\right ) x}} \]

________________________________________________________________________________________

Rubi [F]  time = 22.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2^{\frac {5}{4 x+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} x}} \left (\left (20-60 x+60 x^2-20 x^3\right ) \log (2)+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} \left (5+75 x+75 x^2-5 x^3+20 x^4-10 x^5\right ) \log (2)\right )}{-16 x^2+48 x^3-48 x^4+16 x^5+e^{\frac {2 \left (9+6 x^2+x^4\right )}{1-2 x+x^2}} \left (-x^2+3 x^3-3 x^4+x^5\right )+e^{\frac {9+6 x^2+x^4}{1-2 x+x^2}} \left (-8 x^2+24 x^3-24 x^4+8 x^5\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(2^(5/(4*x + E^((9 + 6*x^2 + x^4)/(1 - 2*x + x^2))*x))*((20 - 60*x + 60*x^2 - 20*x^3)*Log[2] + E^((9 + 6*x
^2 + x^4)/(1 - 2*x + x^2))*(5 + 75*x + 75*x^2 - 5*x^3 + 20*x^4 - 10*x^5)*Log[2]))/(-16*x^2 + 48*x^3 - 48*x^4 +
 16*x^5 + E^((2*(9 + 6*x^2 + x^4))/(1 - 2*x + x^2))*(-x^2 + 3*x^3 - 3*x^4 + x^5) + E^((9 + 6*x^2 + x^4)/(1 - 2
*x + x^2))*(-8*x^2 + 24*x^3 - 24*x^4 + 8*x^5)),x]

[Out]

5*Log[2]*Defer[Int][2^(3 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/(4 + E^((3 + x^2)^2/(-1 + x)^2))^2, x] - 5*
Log[2]*Defer[Int][2^(1 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/(4 + E^((3 + x^2)^2/(-1 + x)^2)), x] - 5*Log[
2]*Defer[Int][2^(7 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/((4 + E^((3 + x^2)^2/(-1 + x)^2))^2*(-1 + x)^3),
x] + 5*Log[2]*Defer[Int][2^(5 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/((4 + E^((3 + x^2)^2/(-1 + x)^2))*(-1
+ x)^3), x] + 5*Log[2]*Defer[Int][2^(6 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/((4 + E^((3 + x^2)^2/(-1 + x)
^2))^2*(-1 + x)^2), x] - 5*Log[2]*Defer[Int][2^(4 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/((4 + E^((3 + x^2)
^2/(-1 + x)^2))*(-1 + x)^2), x] - 5*Log[2]*Defer[Int][2^(6 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/((4 + E^(
(3 + x^2)^2/(-1 + x)^2))^2*(-1 + x)), x] + 5*Log[2]*Defer[Int][2^(4 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))/
((4 + E^((3 + x^2)^2/(-1 + x)^2))*(-1 + x)), x] - 5*Log[2]*Defer[Int][2^(5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x
))/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x^2), x] + 45*Log[2]*Defer[Int][2^(3 + 5/((4 + E^((3 + x^2)^2/(-1 + x)^2)
)*x))/((4 + E^((3 + x^2)^2/(-1 + x)^2))^2*x), x] - 45*Log[2]*Defer[Int][2^(1 + 5/((4 + E^((3 + x^2)^2/(-1 + x)
^2))*x))/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5\ 2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (4 (-1+x)^3+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )\right ) \log (2)}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (1-x)^3 x^2} \, dx\\ &=(5 \log (2)) \int \frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (4 (-1+x)^3+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (1-x)^3 x^2} \, dx\\ &=(5 \log (2)) \int \left (\frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-9-6 x-2 x^3+x^4\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3 x}-\frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3 x^2}\right ) \, dx\\ &=(5 \log (2)) \int \frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-9-6 x-2 x^3+x^4\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3 x} \, dx-(5 \log (2)) \int \frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \left (-1-15 x-15 x^2+x^3-4 x^4+2 x^5\right )}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3 x^2} \, dx\\ &=(5 \log (2)) \int \left (\frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2}-\frac {2^{7+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3}+\frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^2}-\frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)}+\frac {9\ 2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 x}\right ) \, dx-(5 \log (2)) \int \left (\frac {2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}}-\frac {2^{5+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3}+\frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^2}-\frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)}+\frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x^2}+\frac {9\ 2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}\right ) \, dx\\ &=(5 \log (2)) \int \frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2} \, dx-(5 \log (2)) \int \frac {2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}} \, dx-(5 \log (2)) \int \frac {2^{7+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^3} \, dx+(5 \log (2)) \int \frac {2^{5+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^3} \, dx+(5 \log (2)) \int \frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)^2} \, dx-(5 \log (2)) \int \frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)^2} \, dx-(5 \log (2)) \int \frac {2^{6+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 (-1+x)} \, dx+(5 \log (2)) \int \frac {2^{4+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) (-1+x)} \, dx-(5 \log (2)) \int \frac {2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x^2} \, dx+(45 \log (2)) \int \frac {2^{3+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right )^2 x} \, dx-(45 \log (2)) \int \frac {2^{1+\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}}}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 34, normalized size = 1.21 \begin {gather*} \frac {5\ 2^{\frac {5}{\left (4+e^{\frac {\left (3+x^2\right )^2}{(-1+x)^2}}\right ) x}} \log (2)}{\log (32)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2^(5/(4*x + E^((9 + 6*x^2 + x^4)/(1 - 2*x + x^2))*x))*((20 - 60*x + 60*x^2 - 20*x^3)*Log[2] + E^((9
 + 6*x^2 + x^4)/(1 - 2*x + x^2))*(5 + 75*x + 75*x^2 - 5*x^3 + 20*x^4 - 10*x^5)*Log[2]))/(-16*x^2 + 48*x^3 - 48
*x^4 + 16*x^5 + E^((2*(9 + 6*x^2 + x^4))/(1 - 2*x + x^2))*(-x^2 + 3*x^3 - 3*x^4 + x^5) + E^((9 + 6*x^2 + x^4)/
(1 - 2*x + x^2))*(-8*x^2 + 24*x^3 - 24*x^4 + 8*x^5)),x]

[Out]

(5*2^(5/((4 + E^((3 + x^2)^2/(-1 + x)^2))*x))*Log[2])/Log[32]

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 34, normalized size = 1.21 \begin {gather*} 2^{\frac {5}{x e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )} + 4 \, x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x^5+20*x^4-5*x^3+75*x^2+75*x+5)*log(2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+(-20*x^3+60*x^2-60*x+20)
*log(2))*exp(5*log(2)/(x*exp((x^4+6*x^2+9)/(x^2-2*x+1))+4*x))/((x^5-3*x^4+3*x^3-x^2)*exp((x^4+6*x^2+9)/(x^2-2*
x+1))^2+(8*x^5-24*x^4+24*x^3-8*x^2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+16*x^5-48*x^4+48*x^3-16*x^2),x, algorithm="
fricas")

[Out]

2^(5/(x*e^((x^4 + 6*x^2 + 9)/(x^2 - 2*x + 1)) + 4*x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left ({\left (2 \, x^{5} - 4 \, x^{4} + x^{3} - 15 \, x^{2} - 15 \, x - 1\right )} e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )} \log \relax (2) + 4 \, {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )} \log \relax (2)\right )} 2^{\frac {5}{x e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )} + 4 \, x}}}{16 \, x^{5} - 48 \, x^{4} + 48 \, x^{3} - 16 \, x^{2} + {\left (x^{5} - 3 \, x^{4} + 3 \, x^{3} - x^{2}\right )} e^{\left (\frac {2 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}}{x^{2} - 2 \, x + 1}\right )} + 8 \, {\left (x^{5} - 3 \, x^{4} + 3 \, x^{3} - x^{2}\right )} e^{\left (\frac {x^{4} + 6 \, x^{2} + 9}{x^{2} - 2 \, x + 1}\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x^5+20*x^4-5*x^3+75*x^2+75*x+5)*log(2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+(-20*x^3+60*x^2-60*x+20)
*log(2))*exp(5*log(2)/(x*exp((x^4+6*x^2+9)/(x^2-2*x+1))+4*x))/((x^5-3*x^4+3*x^3-x^2)*exp((x^4+6*x^2+9)/(x^2-2*
x+1))^2+(8*x^5-24*x^4+24*x^3-8*x^2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+16*x^5-48*x^4+48*x^3-16*x^2),x, algorithm="
giac")

[Out]

integrate(-5*((2*x^5 - 4*x^4 + x^3 - 15*x^2 - 15*x - 1)*e^((x^4 + 6*x^2 + 9)/(x^2 - 2*x + 1))*log(2) + 4*(x^3
- 3*x^2 + 3*x - 1)*log(2))*2^(5/(x*e^((x^4 + 6*x^2 + 9)/(x^2 - 2*x + 1)) + 4*x))/(16*x^5 - 48*x^4 + 48*x^3 - 1
6*x^2 + (x^5 - 3*x^4 + 3*x^3 - x^2)*e^(2*(x^4 + 6*x^2 + 9)/(x^2 - 2*x + 1)) + 8*(x^5 - 3*x^4 + 3*x^3 - x^2)*e^
((x^4 + 6*x^2 + 9)/(x^2 - 2*x + 1))), x)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 25, normalized size = 0.89




method result size



risch \(32^{\frac {1}{x \left ({\mathrm e}^{\frac {\left (x^{2}+3\right )^{2}}{\left (x -1\right )^{2}}}+4\right )}}\) \(25\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-10*x^5+20*x^4-5*x^3+75*x^2+75*x+5)*ln(2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+(-20*x^3+60*x^2-60*x+20)*ln(2))
*exp(5*ln(2)/(x*exp((x^4+6*x^2+9)/(x^2-2*x+1))+4*x))/((x^5-3*x^4+3*x^3-x^2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))^2+(
8*x^5-24*x^4+24*x^3-8*x^2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+16*x^5-48*x^4+48*x^3-16*x^2),x,method=_RETURNVERBOSE
)

[Out]

32^(1/x/(exp((x^2+3)^2/(x-1)^2)+4))

________________________________________________________________________________________

maxima [A]  time = 0.79, size = 40, normalized size = 1.43 \begin {gather*} 2^{\frac {5}{x e^{\left (x^{2} + 2 \, x + \frac {16}{x^{2} - 2 \, x + 1} + \frac {16}{x - 1} + 9\right )} + 4 \, x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x^5+20*x^4-5*x^3+75*x^2+75*x+5)*log(2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+(-20*x^3+60*x^2-60*x+20)
*log(2))*exp(5*log(2)/(x*exp((x^4+6*x^2+9)/(x^2-2*x+1))+4*x))/((x^5-3*x^4+3*x^3-x^2)*exp((x^4+6*x^2+9)/(x^2-2*
x+1))^2+(8*x^5-24*x^4+24*x^3-8*x^2)*exp((x^4+6*x^2+9)/(x^2-2*x+1))+16*x^5-48*x^4+48*x^3-16*x^2),x, algorithm="
maxima")

[Out]

2^(5/(x*e^(x^2 + 2*x + 16/(x^2 - 2*x + 1) + 16/(x - 1) + 9) + 4*x))

________________________________________________________________________________________

mupad [B]  time = 1.48, size = 56, normalized size = 2.00 \begin {gather*} 2^{\frac {5}{4\,x+x\,{\mathrm {e}}^{\frac {x^4}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {6\,x^2}{x^2-2\,x+1}}\,{\mathrm {e}}^{\frac {9}{x^2-2\,x+1}}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((5*log(2))/(4*x + x*exp((6*x^2 + x^4 + 9)/(x^2 - 2*x + 1))))*(log(2)*(60*x - 60*x^2 + 20*x^3 - 20) -
exp((6*x^2 + x^4 + 9)/(x^2 - 2*x + 1))*log(2)*(75*x + 75*x^2 - 5*x^3 + 20*x^4 - 10*x^5 + 5)))/(exp((6*x^2 + x^
4 + 9)/(x^2 - 2*x + 1))*(8*x^2 - 24*x^3 + 24*x^4 - 8*x^5) + 16*x^2 - 48*x^3 + 48*x^4 - 16*x^5 + exp((2*(6*x^2
+ x^4 + 9))/(x^2 - 2*x + 1))*(x^2 - 3*x^3 + 3*x^4 - x^5)),x)

[Out]

2^(5/(4*x + x*exp(x^4/(x^2 - 2*x + 1))*exp((6*x^2)/(x^2 - 2*x + 1))*exp(9/(x^2 - 2*x + 1))))

________________________________________________________________________________________

sympy [A]  time = 1.87, size = 31, normalized size = 1.11 \begin {gather*} e^{\frac {5 \log {\relax (2 )}}{x e^{\frac {x^{4} + 6 x^{2} + 9}{x^{2} - 2 x + 1}} + 4 x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x**5+20*x**4-5*x**3+75*x**2+75*x+5)*ln(2)*exp((x**4+6*x**2+9)/(x**2-2*x+1))+(-20*x**3+60*x**2-
60*x+20)*ln(2))*exp(5*ln(2)/(x*exp((x**4+6*x**2+9)/(x**2-2*x+1))+4*x))/((x**5-3*x**4+3*x**3-x**2)*exp((x**4+6*
x**2+9)/(x**2-2*x+1))**2+(8*x**5-24*x**4+24*x**3-8*x**2)*exp((x**4+6*x**2+9)/(x**2-2*x+1))+16*x**5-48*x**4+48*
x**3-16*x**2),x)

[Out]

exp(5*log(2)/(x*exp((x**4 + 6*x**2 + 9)/(x**2 - 2*x + 1)) + 4*x))

________________________________________________________________________________________