Optimal. Leaf size=20 \[ 2 \left (11-\frac {16 e^{-1+x}}{e^x-x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6688, 12, 6711, 32} \begin {gather*} \frac {32}{e \left (1-\frac {e^x}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 e^{-1+x} (-1+x)}{\left (e^x-x\right )^2} \, dx\\ &=32 \int \frac {e^{-1+x} (-1+x)}{\left (e^x-x\right )^2} \, dx\\ &=\frac {32 \operatorname {Subst}\left (\int \frac {1}{(-1+x)^2} \, dx,x,\frac {e^x}{x}\right )}{e}\\ &=\frac {32}{e \left (1-\frac {e^x}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 15, normalized size = 0.75 \begin {gather*} -\frac {32 x}{e \left (e^x-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 16, normalized size = 0.80 \begin {gather*} \frac {32 \, x}{x e - e^{\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 16, normalized size = 0.80 \begin {gather*} \frac {32 \, x}{x e - e^{\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 14, normalized size = 0.70
method | result | size |
risch | \(\frac {32 \,{\mathrm e}^{-1} x}{x -{\mathrm e}^{x}}\) | \(14\) |
norman | \(\frac {32 \,{\mathrm e}^{-1} {\mathrm e}^{x}}{x -{\mathrm e}^{x}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 16, normalized size = 0.80 \begin {gather*} \frac {32 \, x}{x e - e^{\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.74, size = 15, normalized size = 0.75 \begin {gather*} -\frac {32\,x}{{\mathrm {e}}^{x+1}-x\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.75 \begin {gather*} - \frac {32 x}{- e x + e e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________