Optimal. Leaf size=29 \[ -3+e^{\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 22.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {15+3 x-3 \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )}{x}\right ) \left (-3+39 x-60 x^2+(15-66 x) \log (x)-15 \log ^2(x)+\left (-12 x+12 x^2+(-3+15 x) \log (x)+3 \log ^2(x)\right ) \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{-4 x^3+4 x^4+\left (-x^2+5 x^3\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \left (3-39 x+60 x^2-(15-66 x) \log (x)+15 \log ^2(x)-\left (-12 x+12 x^2+(-3+15 x) \log (x)+3 \log ^2(x)\right ) \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{4 x^3-4 x^4-\left (-x^2+5 x^3\right ) \log (x)-x^2 \log ^2(x)} \, dx\\ &=\int \left (-\frac {60 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(-1+x+\log (x)) (4 x+\log (x))}-\frac {3 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2 (-1+x+\log (x)) (4 x+\log (x))}+\frac {39 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x (-1+x+\log (x)) (4 x+\log (x))}-\frac {3 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-5+22 x) \log (x)}{x^2 (-1+x+\log (x)) (4 x+\log (x))}-\frac {15 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \log ^2(x)}{x^2 (-1+x+\log (x)) (4 x+\log (x))}+\frac {3 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )}{x^2}\right ) \, dx\\ &=-\left (3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2 (-1+x+\log (x)) (4 x+\log (x))} \, dx\right )-3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-5+22 x) \log (x)}{x^2 (-1+x+\log (x)) (4 x+\log (x))} \, dx+3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )}{x^2} \, dx-15 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \log ^2(x)}{x^2 (-1+x+\log (x)) (4 x+\log (x))} \, dx+39 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x (-1+x+\log (x)) (4 x+\log (x))} \, dx-60 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(-1+x+\log (x)) (4 x+\log (x))} \, dx\\ &=-\left (3 \int \left (\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2 (1+3 x) (-1+x+\log (x))}-\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2 (1+3 x) (4 x+\log (x))}\right ) \, dx\right )-3 \int \left (-\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-1+x) (-5+22 x)}{x^2 (1+3 x) (-1+x+\log (x))}+\frac {4 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-5+22 x)}{x (1+3 x) (4 x+\log (x))}\right ) \, dx+3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )}{x^2} \, dx-15 \int \left (\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2}+\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-1+x)^2}{x^2 (1+3 x) (-1+x+\log (x))}-\frac {16 \exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(1+3 x) (4 x+\log (x))}\right ) \, dx+39 \int \left (\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x (1+3 x) (-1+x+\log (x))}-\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x (1+3 x) (4 x+\log (x))}\right ) \, dx-60 \int \left (\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(1+3 x) (-1+x+\log (x))}-\frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(1+3 x) (4 x+\log (x))}\right ) \, dx\\ &=-\left (3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2 (1+3 x) (-1+x+\log (x))} \, dx\right )+3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-1+x) (-5+22 x)}{x^2 (1+3 x) (-1+x+\log (x))} \, dx+3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2 (1+3 x) (4 x+\log (x))} \, dx+3 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) \log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )}{x^2} \, dx-12 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-5+22 x)}{x (1+3 x) (4 x+\log (x))} \, dx-15 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x^2} \, dx-15 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right ) (-1+x)^2}{x^2 (1+3 x) (-1+x+\log (x))} \, dx+39 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x (1+3 x) (-1+x+\log (x))} \, dx-39 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{x (1+3 x) (4 x+\log (x))} \, dx-60 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(1+3 x) (-1+x+\log (x))} \, dx+60 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(1+3 x) (4 x+\log (x))} \, dx+240 \int \frac {\exp \left (\frac {3 \left (5+x-\log \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )\right )}{x}\right )}{(1+3 x) (4 x+\log (x))} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 30, normalized size = 1.03 \begin {gather*} e^{3+\frac {15}{x}} \left (\frac {-1+x+\log (x)}{4 x+\log (x)}\right )^{-3/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 26, normalized size = 0.90 \begin {gather*} e^{\left (\frac {3 \, {\left (x - \log \left (\frac {x + \log \relax (x) - 1}{4 \, x + \log \relax (x)}\right ) + 5\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.96, size = 46, normalized size = 1.59 \begin {gather*} e^{\left (-\frac {3 \, \log \left (\frac {x}{4 \, x + \log \relax (x)} + \frac {\log \relax (x)}{4 \, x + \log \relax (x)} - \frac {1}{4 \, x + \log \relax (x)}\right )}{x} + \frac {15}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 165, normalized size = 5.69
method | result | size |
risch | \({\mathrm e}^{\frac {\frac {3 i \pi \mathrm {csgn}\left (\frac {i \left (-1+\ln \relax (x )+x \right )}{x +\frac {\ln \relax (x )}{4}}\right )^{3}}{2}-\frac {3 i \pi \mathrm {csgn}\left (\frac {i \left (-1+\ln \relax (x )+x \right )}{x +\frac {\ln \relax (x )}{4}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x +\frac {\ln \relax (x )}{4}}\right )}{2}-\frac {3 i \pi \mathrm {csgn}\left (\frac {i \left (-1+\ln \relax (x )+x \right )}{x +\frac {\ln \relax (x )}{4}}\right )^{2} \mathrm {csgn}\left (i \left (-1+\ln \relax (x )+x \right )\right )}{2}+\frac {3 i \pi \,\mathrm {csgn}\left (\frac {i \left (-1+\ln \relax (x )+x \right )}{x +\frac {\ln \relax (x )}{4}}\right ) \mathrm {csgn}\left (\frac {i}{x +\frac {\ln \relax (x )}{4}}\right ) \mathrm {csgn}\left (i \left (-1+\ln \relax (x )+x \right )\right )}{2}+6 \ln \relax (2)+3 \ln \left (x +\frac {\ln \relax (x )}{4}\right )-3 \ln \left (-1+\ln \relax (x )+x \right )+3 x +15}{x}}\) | \(165\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 31, normalized size = 1.07 \begin {gather*} e^{\left (\frac {3 \, \log \left (4 \, x + \log \relax (x)\right )}{x} - \frac {3 \, \log \left (x + \log \relax (x) - 1\right )}{x} + \frac {15}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.76, size = 31, normalized size = 1.07 \begin {gather*} \frac {{\mathrm {e}}^3\,{\mathrm {e}}^{15/x}}{{\left (\frac {x+\ln \relax (x)-1}{4\,x+\ln \relax (x)}\right )}^{3/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.70, size = 24, normalized size = 0.83 \begin {gather*} e^{\frac {3 x - 3 \log {\left (\frac {x + \log {\relax (x )} - 1}{4 x + \log {\relax (x )}} \right )} + 15}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________