Optimal. Leaf size=20 \[ \frac {x^2}{\log \left (-15+5 \left (1+\frac {x^2}{625}\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 36, normalized size of antiderivative = 1.80, number of steps used = 14, number of rules used = 11, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.239, Rules used = {6725, 2475, 2411, 12, 2353, 2297, 2298, 2302, 30, 2454, 2389} \begin {gather*} \frac {1250}{\log \left (\frac {x^2}{125}-10\right )}-\frac {1250-x^2}{\log \left (\frac {x^2}{125}-10\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 2454
Rule 2475
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 x^3}{\left (-1250+x^2\right ) \log ^2\left (-10+\frac {x^2}{125}\right )}+\frac {2 x}{\log \left (-10+\frac {x^2}{125}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{\left (-1250+x^2\right ) \log ^2\left (-10+\frac {x^2}{125}\right )} \, dx\right )+2 \int \frac {x}{\log \left (-10+\frac {x^2}{125}\right )} \, dx\\ &=-\operatorname {Subst}\left (\int \frac {x}{(-1250+x) \log ^2\left (-10+\frac {x}{125}\right )} \, dx,x,x^2\right )+\operatorname {Subst}\left (\int \frac {1}{\log \left (-10+\frac {x}{125}\right )} \, dx,x,x^2\right )\\ &=-\left (125 \operatorname {Subst}\left (\int \frac {1250+125 x}{125 x \log ^2(x)} \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )\right )+125 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )\\ &=125 \text {li}\left (-10+\frac {x^2}{125}\right )-\operatorname {Subst}\left (\int \frac {1250+125 x}{x \log ^2(x)} \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )\\ &=125 \text {li}\left (-10+\frac {x^2}{125}\right )-\operatorname {Subst}\left (\int \left (\frac {125}{\log ^2(x)}+\frac {1250}{x \log ^2(x)}\right ) \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )\\ &=125 \text {li}\left (-10+\frac {x^2}{125}\right )-125 \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )-1250 \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )\\ &=-\frac {1250-x^2}{\log \left (-10+\frac {x^2}{125}\right )}+125 \text {li}\left (-10+\frac {x^2}{125}\right )-125 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,\frac {1}{125} \left (-1250+x^2\right )\right )-1250 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (-10+\frac {x^2}{125}\right )\right )\\ &=\frac {1250}{\log \left (-10+\frac {x^2}{125}\right )}-\frac {1250-x^2}{\log \left (-10+\frac {x^2}{125}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 16, normalized size = 0.80 \begin {gather*} \frac {x^2}{\log \left (-10+\frac {x^2}{125}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^{2}}{\log \left (\frac {1}{125} \, x^{2} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^{2}}{\log \left (\frac {1}{125} \, x^{2} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.75
method | result | size |
norman | \(\frac {x^{2}}{\ln \left (\frac {x^{2}}{125}-10\right )}\) | \(15\) |
risch | \(\frac {x^{2}}{\ln \left (\frac {x^{2}}{125}-10\right )}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 20, normalized size = 1.00 \begin {gather*} -\frac {x^{2}}{3 \, \log \relax (5) - \log \left (x^{2} - 1250\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.93, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^2}{\ln \left (\frac {x^2}{125}-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 10, normalized size = 0.50 \begin {gather*} \frac {x^{2}}{\log {\left (\frac {x^{2}}{125} - 10 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________