3.96.20 \(\int e^{-5+x} \, dx\)

Optimal. Leaf size=5 \[ e^{-5+x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 5, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2194} \begin {gather*} e^{x-5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(-5 + x),x]

[Out]

E^(-5 + x)

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=e^{-5+x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 5, normalized size = 1.00 \begin {gather*} e^{-5+x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(-5 + x),x]

[Out]

E^(-5 + x)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 4, normalized size = 0.80 \begin {gather*} e^{\left (x - 5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x-5),x, algorithm="fricas")

[Out]

e^(x - 5)

________________________________________________________________________________________

giac [A]  time = 0.38, size = 4, normalized size = 0.80 \begin {gather*} e^{\left (x - 5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x-5),x, algorithm="giac")

[Out]

e^(x - 5)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 5, normalized size = 1.00




method result size



gosper \({\mathrm e}^{x -5}\) \(5\)
derivativedivides \({\mathrm e}^{x -5}\) \(5\)
default \({\mathrm e}^{x -5}\) \(5\)
norman \({\mathrm e}^{x -5}\) \(5\)
risch \({\mathrm e}^{x -5}\) \(5\)
meijerg \(-{\mathrm e}^{-5} \left (1-{\mathrm e}^{x}\right )\) \(11\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x-5),x,method=_RETURNVERBOSE)

[Out]

exp(x-5)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 4, normalized size = 0.80 \begin {gather*} e^{\left (x - 5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x-5),x, algorithm="maxima")

[Out]

e^(x - 5)

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 5, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{-5}\,{\mathrm {e}}^x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x - 5),x)

[Out]

exp(-5)*exp(x)

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 3, normalized size = 0.60 \begin {gather*} e^{x - 5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x-5),x)

[Out]

exp(x - 5)

________________________________________________________________________________________