Optimal. Leaf size=30 \[ \left (2 x+x^2+\frac {3}{5 x \left (-7+\log ^2(5)-\log (4 x)\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-144+420 x^2-1260 x^3+68600 x^4+102900 x^5+34300 x^6+\left (18-60 x^2+390 x^3-29400 x^4-44100 x^5-14700 x^6\right ) \log ^2(5)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6\right ) \log ^4(5)+\left (-200 x^4-300 x^5-100 x^6\right ) \log ^6(5)+\left (-18+60 x^2-390 x^3+29400 x^4+44100 x^5+14700 x^6+\left (60 x^3-8400 x^4-12600 x^5-4200 x^6\right ) \log ^2(5)+\left (600 x^4+900 x^5+300 x^6\right ) \log ^4(5)\right ) \log (4 x)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6+\left (-600 x^4-900 x^5-300 x^6\right ) \log ^2(5)\right ) \log ^2(4 x)+\left (200 x^4+300 x^5+100 x^6\right ) \log ^3(4 x)}{8575 x^3-3675 x^3 \log ^2(5)+525 x^3 \log ^4(5)-25 x^3 \log ^6(5)+\left (3675 x^3-1050 x^3 \log ^2(5)+75 x^3 \log ^4(5)\right ) \log (4 x)+\left (525 x^3-75 x^3 \log ^2(5)\right ) \log ^2(4 x)+25 x^3 \log ^3(4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-144+420 x^2-1260 x^3+68600 x^4+102900 x^5+34300 x^6+\left (18-60 x^2+390 x^3-29400 x^4-44100 x^5-14700 x^6\right ) \log ^2(5)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6\right ) \log ^4(5)+\left (-200 x^4-300 x^5-100 x^6\right ) \log ^6(5)+\left (-18+60 x^2-390 x^3+29400 x^4+44100 x^5+14700 x^6+\left (60 x^3-8400 x^4-12600 x^5-4200 x^6\right ) \log ^2(5)+\left (600 x^4+900 x^5+300 x^6\right ) \log ^4(5)\right ) \log (4 x)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6+\left (-600 x^4-900 x^5-300 x^6\right ) \log ^2(5)\right ) \log ^2(4 x)+\left (200 x^4+300 x^5+100 x^6\right ) \log ^3(4 x)}{525 x^3 \log ^4(5)-25 x^3 \log ^6(5)+x^3 \left (8575-3675 \log ^2(5)\right )+\left (3675 x^3-1050 x^3 \log ^2(5)+75 x^3 \log ^4(5)\right ) \log (4 x)+\left (525 x^3-75 x^3 \log ^2(5)\right ) \log ^2(4 x)+25 x^3 \log ^3(4 x)} \, dx\\ &=\int \frac {-144+420 x^2-1260 x^3+68600 x^4+102900 x^5+34300 x^6+\left (18-60 x^2+390 x^3-29400 x^4-44100 x^5-14700 x^6\right ) \log ^2(5)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6\right ) \log ^4(5)+\left (-200 x^4-300 x^5-100 x^6\right ) \log ^6(5)+\left (-18+60 x^2-390 x^3+29400 x^4+44100 x^5+14700 x^6+\left (60 x^3-8400 x^4-12600 x^5-4200 x^6\right ) \log ^2(5)+\left (600 x^4+900 x^5+300 x^6\right ) \log ^4(5)\right ) \log (4 x)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6+\left (-600 x^4-900 x^5-300 x^6\right ) \log ^2(5)\right ) \log ^2(4 x)+\left (200 x^4+300 x^5+100 x^6\right ) \log ^3(4 x)}{x^3 \left (8575-3675 \log ^2(5)\right )+x^3 \left (525 \log ^4(5)-25 \log ^6(5)\right )+\left (3675 x^3-1050 x^3 \log ^2(5)+75 x^3 \log ^4(5)\right ) \log (4 x)+\left (525 x^3-75 x^3 \log ^2(5)\right ) \log ^2(4 x)+25 x^3 \log ^3(4 x)} \, dx\\ &=\int \frac {-144+420 x^2-1260 x^3+68600 x^4+102900 x^5+34300 x^6+\left (18-60 x^2+390 x^3-29400 x^4-44100 x^5-14700 x^6\right ) \log ^2(5)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6\right ) \log ^4(5)+\left (-200 x^4-300 x^5-100 x^6\right ) \log ^6(5)+\left (-18+60 x^2-390 x^3+29400 x^4+44100 x^5+14700 x^6+\left (60 x^3-8400 x^4-12600 x^5-4200 x^6\right ) \log ^2(5)+\left (600 x^4+900 x^5+300 x^6\right ) \log ^4(5)\right ) \log (4 x)+\left (-30 x^3+4200 x^4+6300 x^5+2100 x^6+\left (-600 x^4-900 x^5-300 x^6\right ) \log ^2(5)\right ) \log ^2(4 x)+\left (200 x^4+300 x^5+100 x^6\right ) \log ^3(4 x)}{x^3 \left (8575-3675 \log ^2(5)+525 \log ^4(5)-25 \log ^6(5)\right )+\left (3675 x^3-1050 x^3 \log ^2(5)+75 x^3 \log ^4(5)\right ) \log (4 x)+\left (525 x^3-75 x^3 \log ^2(5)\right ) \log ^2(4 x)+25 x^3 \log ^3(4 x)} \, dx\\ &=\int \frac {2 \left (9 \left (-8+\log ^2(5)\right )-30 x^2 \left (-7+\log ^2(5)\right )-100 x^4 \left (-7+\log ^2(5)\right )^3-150 x^5 \left (-7+\log ^2(5)\right )^3-50 x^6 \left (-7+\log ^2(5)\right )^3-15 x^3 \left (42-13 \log ^2(5)+\log ^4(5)\right )+3 \left (-3+10 x^2+100 x^4 \left (-7+\log ^2(5)\right )^2+150 x^5 \left (-7+\log ^2(5)\right )^2+50 x^6 \left (-7+\log ^2(5)\right )^2+5 x^3 \left (-13+2 \log ^2(5)\right )\right ) \log (4 x)-15 x^3 \left (1+20 x \left (-7+\log ^2(5)\right )+30 x^2 \left (-7+\log ^2(5)\right )+10 x^3 \left (-7+\log ^2(5)\right )\right ) \log ^2(4 x)+50 x^4 \left (2+3 x+x^2\right ) \log ^3(4 x)\right )}{25 x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^3} \, dx\\ &=\frac {2}{25} \int \frac {9 \left (-8+\log ^2(5)\right )-30 x^2 \left (-7+\log ^2(5)\right )-100 x^4 \left (-7+\log ^2(5)\right )^3-150 x^5 \left (-7+\log ^2(5)\right )^3-50 x^6 \left (-7+\log ^2(5)\right )^3-15 x^3 \left (42-13 \log ^2(5)+\log ^4(5)\right )+3 \left (-3+10 x^2+100 x^4 \left (-7+\log ^2(5)\right )^2+150 x^5 \left (-7+\log ^2(5)\right )^2+50 x^6 \left (-7+\log ^2(5)\right )^2+5 x^3 \left (-13+2 \log ^2(5)\right )\right ) \log (4 x)-15 x^3 \left (1+20 x \left (-7+\log ^2(5)\right )+30 x^2 \left (-7+\log ^2(5)\right )+10 x^3 \left (-7+\log ^2(5)\right )\right ) \log ^2(4 x)+50 x^4 \left (2+3 x+x^2\right ) \log ^3(4 x)}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^3} \, dx\\ &=\frac {2}{25} \int \left (50 x \left (2+3 x+x^2\right )+\frac {9}{x^3 \left (-7 \left (1-\frac {\log ^2(5)}{7}\right )-\log (4 x)\right )^3}+\frac {15}{-7 \left (1-\frac {\log ^2(5)}{7}\right )-\log (4 x)}+\frac {3 \left (-3+10 x^2+5 x^3\right )}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^2}\right ) \, dx\\ &=\frac {6}{25} \int \frac {-3+10 x^2+5 x^3}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^2} \, dx+\frac {18}{25} \int \frac {1}{x^3 \left (-7 \left (1-\frac {\log ^2(5)}{7}\right )-\log (4 x)\right )^3} \, dx+\frac {6}{5} \int \frac {1}{-7 \left (1-\frac {\log ^2(5)}{7}\right )-\log (4 x)} \, dx+4 \int x \left (2+3 x+x^2\right ) \, dx\\ &=\frac {9}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )^2}+\frac {6}{25} \int \frac {-3+10 x^2+5 x^3}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^2} \, dx+\frac {3}{10} \operatorname {Subst}\left (\int \frac {e^x}{-x-7 \left (1-\frac {\log ^2(5)}{7}\right )} \, dx,x,\log (4 x)\right )+\frac {18}{25} \int \frac {1}{x^3 \left (-7 \left (1-\frac {\log ^2(5)}{7}\right )-\log (4 x)\right )^2} \, dx+4 \int \left (2 x+3 x^2+x^3\right ) \, dx\\ &=4 x^2+4 x^3+x^4-\frac {3}{10} e^{-7+\log ^2(5)} \text {Ei}\left (7-\log ^2(5)+\log (4 x)\right )+\frac {9}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )^2}-\frac {18}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )}+\frac {6}{25} \int \frac {-3+10 x^2+5 x^3}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^2} \, dx+\frac {36}{25} \int \frac {1}{x^3 \left (-7 \left (1-\frac {\log ^2(5)}{7}\right )-\log (4 x)\right )} \, dx\\ &=4 x^2+4 x^3+x^4-\frac {3}{10} e^{-7+\log ^2(5)} \text {Ei}\left (7-\log ^2(5)+\log (4 x)\right )+\frac {9}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )^2}-\frac {18}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )}+\frac {6}{25} \int \frac {-3+10 x^2+5 x^3}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^2} \, dx+\frac {576}{25} \operatorname {Subst}\left (\int \frac {e^{-2 x}}{-x-7 \left (1-\frac {\log ^2(5)}{7}\right )} \, dx,x,\log (4 x)\right )\\ &=4 x^2+4 x^3+x^4-\frac {576}{25} e^{14-2 \log ^2(5)} \text {Ei}\left (-2 \left (7-\log ^2(5)+\log (4 x)\right )\right )-\frac {3}{10} e^{-7+\log ^2(5)} \text {Ei}\left (7-\log ^2(5)+\log (4 x)\right )+\frac {9}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )^2}-\frac {18}{25 x^2 \left (7-\log ^2(5)+\log (4 x)\right )}+\frac {6}{25} \int \frac {-3+10 x^2+5 x^3}{x^3 \left (7 \left (1-\frac {\log ^2(5)}{7}\right )+\log (4 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 62, normalized size = 2.07 \begin {gather*} \frac {2}{25} \left (50 x^2+50 x^3+\frac {25 x^4}{2}+\frac {9}{2 x^2 \left (7-\log ^2(5)+\log (4 x)\right )^2}-\frac {15 (2+x)}{7-\log ^2(5)+\log (4 x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 210, normalized size = 7.00 \begin {gather*} \frac {1225 \, x^{6} + 4900 \, x^{5} + 25 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )} \log \relax (5)^{4} + 4900 \, x^{4} - 210 \, x^{3} - 10 \, {\left (35 \, x^{6} + 140 \, x^{5} + 140 \, x^{4} - 3 \, x^{3} - 6 \, x^{2}\right )} \log \relax (5)^{2} + 25 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )} \log \left (4 \, x\right )^{2} - 420 \, x^{2} + 10 \, {\left (35 \, x^{6} + 140 \, x^{5} + 140 \, x^{4} - 3 \, x^{3} - 5 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )} \log \relax (5)^{2} - 6 \, x^{2}\right )} \log \left (4 \, x\right ) + 9}{25 \, {\left (x^{2} \log \relax (5)^{4} - 14 \, x^{2} \log \relax (5)^{2} + x^{2} \log \left (4 \, x\right )^{2} + 49 \, x^{2} - 2 \, {\left (x^{2} \log \relax (5)^{2} - 7 \, x^{2}\right )} \log \left (4 \, x\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.69, size = 121, normalized size = 4.03 \begin {gather*} x^{4} + 4 \, x^{3} + 4 \, x^{2} + \frac {3 \, {\left (10 \, x^{3} \log \relax (5)^{2} + 20 \, x^{2} \log \relax (5)^{2} - 10 \, x^{3} \log \left (4 \, x\right ) - 70 \, x^{3} - 20 \, x^{2} \log \left (4 \, x\right ) - 140 \, x^{2} + 3\right )}}{25 \, {\left (x^{2} \log \relax (5)^{4} - 2 \, x^{2} \log \relax (5)^{2} \log \left (4 \, x\right ) - 14 \, x^{2} \log \relax (5)^{2} + x^{2} \log \left (4 \, x\right )^{2} + 14 \, x^{2} \log \left (4 \, x\right ) + 49 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 82, normalized size = 2.73
method | result | size |
risch | \(x^{4}+4 x^{3}+4 x^{2}+\frac {\frac {6 x^{3} \ln \relax (5)^{2}}{5}+\frac {12 x^{2} \ln \relax (5)^{2}}{5}-\frac {6 x^{3} \ln \left (4 x \right )}{5}-\frac {42 x^{3}}{5}-\frac {12 x^{2} \ln \left (4 x \right )}{5}-\frac {84 x^{2}}{5}+\frac {9}{25}}{x^{2} \left (\ln \relax (5)^{2}-7-\ln \left (4 x \right )\right )^{2}}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 275, normalized size = 9.17 \begin {gather*} -\frac {25 \, {\left (\log \relax (5)^{4} - 14 \, \log \relax (5)^{2} - 4 \, {\left (\log \relax (5)^{2} - 7\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} + 49\right )} x^{6} + 100 \, {\left (\log \relax (5)^{4} - 14 \, \log \relax (5)^{2} - 4 \, {\left (\log \relax (5)^{2} - 7\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} + 49\right )} x^{5} + 100 \, {\left (\log \relax (5)^{4} - 14 \, \log \relax (5)^{2} - 4 \, {\left (\log \relax (5)^{2} - 7\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} + 49\right )} x^{4} + 30 \, {\left (\log \relax (5)^{2} - 2 \, \log \relax (2) - 7\right )} x^{3} + 60 \, {\left (\log \relax (5)^{2} - 2 \, \log \relax (2) - 7\right )} x^{2} + 25 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )} \log \relax (x)^{2} - 10 \, {\left (5 \, {\left (\log \relax (5)^{2} - 2 \, \log \relax (2) - 7\right )} x^{6} + 20 \, {\left (\log \relax (5)^{2} - 2 \, \log \relax (2) - 7\right )} x^{5} + 20 \, {\left (\log \relax (5)^{2} - 2 \, \log \relax (2) - 7\right )} x^{4} + 3 \, x^{3} + 6 \, x^{2}\right )} \log \relax (x) + 9}{25 \, {\left (2 \, {\left (\log \relax (5)^{2} - 2 \, \log \relax (2) - 7\right )} x^{2} \log \relax (x) - x^{2} \log \relax (x)^{2} - {\left (\log \relax (5)^{4} - 14 \, \log \relax (5)^{2} - 4 \, {\left (\log \relax (5)^{2} - 7\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} + 49\right )} x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\ln \left (4\,x\right )}^3\,\left (100\,x^6+300\,x^5+200\,x^4\right )-{\ln \relax (5)}^6\,\left (100\,x^6+300\,x^5+200\,x^4\right )+{\ln \relax (5)}^4\,\left (2100\,x^6+6300\,x^5+4200\,x^4-30\,x^3\right )+{\ln \left (4\,x\right )}^2\,\left (4200\,x^4-30\,x^3-{\ln \relax (5)}^2\,\left (300\,x^6+900\,x^5+600\,x^4\right )+6300\,x^5+2100\,x^6\right )-{\ln \relax (5)}^2\,\left (14700\,x^6+44100\,x^5+29400\,x^4-390\,x^3+60\,x^2-18\right )+\ln \left (4\,x\right )\,\left ({\ln \relax (5)}^4\,\left (300\,x^6+900\,x^5+600\,x^4\right )-{\ln \relax (5)}^2\,\left (4200\,x^6+12600\,x^5+8400\,x^4-60\,x^3\right )+60\,x^2-390\,x^3+29400\,x^4+44100\,x^5+14700\,x^6-18\right )+420\,x^2-1260\,x^3+68600\,x^4+102900\,x^5+34300\,x^6-144}{525\,x^3\,{\ln \relax (5)}^4-3675\,x^3\,{\ln \relax (5)}^2-25\,x^3\,{\ln \relax (5)}^6+\ln \left (4\,x\right )\,\left (75\,x^3\,{\ln \relax (5)}^4-1050\,x^3\,{\ln \relax (5)}^2+3675\,x^3\right )-{\ln \left (4\,x\right )}^2\,\left (75\,x^3\,{\ln \relax (5)}^2-525\,x^3\right )+8575\,x^3+25\,x^3\,{\ln \left (4\,x\right )}^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 119, normalized size = 3.97 \begin {gather*} x^{4} + 4 x^{3} + 4 x^{2} + \frac {- 210 x^{3} + 30 x^{3} \log {\relax (5 )}^{2} - 420 x^{2} + 60 x^{2} \log {\relax (5 )}^{2} + \left (- 30 x^{3} - 60 x^{2}\right ) \log {\left (4 x \right )} + 9}{25 x^{2} \log {\left (4 x \right )}^{2} - 350 x^{2} \log {\relax (5 )}^{2} + 25 x^{2} \log {\relax (5 )}^{4} + 1225 x^{2} + \left (- 50 x^{2} \log {\relax (5 )}^{2} + 350 x^{2}\right ) \log {\left (4 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________