Optimal. Leaf size=30 \[ \frac {x-x^2 \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 3.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (1+x+e^{4-x} \left (-x-x^2\right )\right ) \log \left (\frac {e^{-4+x} \left (-1+e^{4-x} x\right )}{x}\right )+\log \left (e^x x\right ) \left (-1+x+\left (1-e^{4-x} x\right ) \log \left (\frac {e^{-4+x} \left (-1+e^{4-x} x\right )}{x}\right )\right )}{-1+e^{4-x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left ((-1+x) \log \left (e^x x\right )\right )-e^{-x} \left (e^x-e^4 x\right ) \log \left (1-\frac {e^{-4+x}}{x}\right ) \left (1+x+\log \left (e^x x\right )\right )}{1-e^{4-x} x} \, dx\\ &=\int \left (-\log \left (1-\frac {e^{-4+x}}{x}\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right )+\log \left (e^x x\right )-x \log \left (e^x x\right )+\frac {e^4 (-1+x) x \log \left (e^x x\right )}{-e^x+e^4 x}-\log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )\right ) \, dx\\ &=e^4 \int \frac {(-1+x) x \log \left (e^x x\right )}{-e^x+e^4 x} \, dx-\int \log \left (1-\frac {e^{-4+x}}{x}\right ) \, dx-\int x \log \left (1-\frac {e^{-4+x}}{x}\right ) \, dx+\int \log \left (e^x x\right ) \, dx-\int x \log \left (e^x x\right ) \, dx-\int \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right ) \, dx\\ &=-x \log \left (1-\frac {e^{-4+x}}{x}\right )-\frac {1}{2} x^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+x \log \left (e^x x\right )-\frac {1}{2} x^2 \log \left (e^x x\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )+\frac {1}{2} \int x (1+x) \, dx+\frac {1}{2} \int \frac {e^x (-1+x) x}{e^x-e^4 x} \, dx-e^4 \int \frac {(1+x) \left (-\int \frac {x}{-e^x+e^4 x} \, dx+\int \frac {x^2}{-e^x+e^4 x} \, dx\right )}{x} \, dx-\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x}{-e^x+e^4 x} \, dx+\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x^2}{-e^x+e^4 x} \, dx-\int (1+x) \, dx+\int \frac {e^x (-1+x)}{e^x-e^4 x} \, dx+\int (1+x) \log \left (1-\frac {e^{-4+x}}{x}\right ) \, dx+\int \frac {e^x (-1+x) \log \left (e^x x\right )}{e^x-e^4 x} \, dx\\ &=-x-\frac {x^2}{2}-x \log \left (1-\frac {e^{-4+x}}{x}\right )-\frac {1}{2} x^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+\frac {1}{2} (1+x)^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+x \log \left (e^x x\right )-\frac {1}{2} x^2 \log \left (e^x x\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )-\frac {1}{2} \int \frac {e^x (-1+x) (1+x)^2}{x \left (e^x-e^4 x\right )} \, dx+\frac {1}{2} \int \left (x+x^2\right ) \, dx+\frac {1}{2} \int \left (\frac {e^x x}{-e^x+e^4 x}-\frac {e^x x^2}{-e^x+e^4 x}\right ) \, dx-e^4 \int \left (-\frac {(1+x) \int \frac {x}{-e^x+e^4 x} \, dx}{x}+\frac {(1+x) \int \frac {x^2}{-e^x+e^4 x} \, dx}{x}\right ) \, dx-\log \left (e^x x\right ) \int \frac {e^x}{e^x-e^4 x} \, dx-\log \left (e^x x\right ) \int \frac {e^x x}{-e^x+e^4 x} \, dx-\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x}{-e^x+e^4 x} \, dx+\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x^2}{-e^x+e^4 x} \, dx+\int \left (-\frac {e^x}{e^x-e^4 x}-\frac {e^x x}{-e^x+e^4 x}\right ) \, dx-\int \frac {(1+x) \left (-\int \frac {e^x}{e^x-e^4 x} \, dx-\int \frac {e^x x}{-e^x+e^4 x} \, dx\right )}{x} \, dx\\ &=-x-\frac {x^2}{4}+\frac {x^3}{6}-x \log \left (1-\frac {e^{-4+x}}{x}\right )-\frac {1}{2} x^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+\frac {1}{2} (1+x)^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+x \log \left (e^x x\right )-\frac {1}{2} x^2 \log \left (e^x x\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )+\frac {1}{2} \int \frac {e^x x}{-e^x+e^4 x} \, dx-\frac {1}{2} \int \frac {e^x x^2}{-e^x+e^4 x} \, dx-\frac {1}{2} \int \left (-\frac {e^x}{e^x-e^4 x}+\frac {e^x}{x \left (-e^x+e^4 x\right )}-\frac {e^x x}{-e^x+e^4 x}-\frac {e^x x^2}{-e^x+e^4 x}\right ) \, dx+e^4 \int \frac {(1+x) \int \frac {x}{-e^x+e^4 x} \, dx}{x} \, dx-e^4 \int \frac {(1+x) \int \frac {x^2}{-e^x+e^4 x} \, dx}{x} \, dx-\log \left (e^x x\right ) \int \frac {e^x}{e^x-e^4 x} \, dx-\log \left (e^x x\right ) \int \frac {e^x x}{-e^x+e^4 x} \, dx-\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x}{-e^x+e^4 x} \, dx+\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x^2}{-e^x+e^4 x} \, dx-\int \frac {e^x}{e^x-e^4 x} \, dx-\int \frac {e^x x}{-e^x+e^4 x} \, dx-\int \left (-\frac {(1+x) \int \frac {e^x}{e^x-e^4 x} \, dx}{x}-\frac {(1+x) \int \frac {e^x x}{-e^x+e^4 x} \, dx}{x}\right ) \, dx\\ &=-x-\frac {x^2}{4}+\frac {x^3}{6}-x \log \left (1-\frac {e^{-4+x}}{x}\right )-\frac {1}{2} x^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+\frac {1}{2} (1+x)^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+x \log \left (e^x x\right )-\frac {1}{2} x^2 \log \left (e^x x\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )+\frac {1}{2} \int \frac {e^x}{e^x-e^4 x} \, dx-\frac {1}{2} \int \frac {e^x}{x \left (-e^x+e^4 x\right )} \, dx+2 \left (\frac {1}{2} \int \frac {e^x x}{-e^x+e^4 x} \, dx\right )+e^4 \int \left (\int \frac {x}{-e^x+e^4 x} \, dx+\frac {\int \frac {x}{-e^x+e^4 x} \, dx}{x}\right ) \, dx-e^4 \int \left (\int \frac {x^2}{-e^x+e^4 x} \, dx+\frac {\int \frac {x^2}{-e^x+e^4 x} \, dx}{x}\right ) \, dx-\log \left (e^x x\right ) \int \frac {e^x}{e^x-e^4 x} \, dx-\log \left (e^x x\right ) \int \frac {e^x x}{-e^x+e^4 x} \, dx-\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x}{-e^x+e^4 x} \, dx+\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x^2}{-e^x+e^4 x} \, dx-\int \frac {e^x}{e^x-e^4 x} \, dx-\int \frac {e^x x}{-e^x+e^4 x} \, dx+\int \frac {(1+x) \int \frac {e^x}{e^x-e^4 x} \, dx}{x} \, dx+\int \frac {(1+x) \int \frac {e^x x}{-e^x+e^4 x} \, dx}{x} \, dx\\ &=-x-\frac {x^2}{4}+\frac {x^3}{6}-x \log \left (1-\frac {e^{-4+x}}{x}\right )-\frac {1}{2} x^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+\frac {1}{2} (1+x)^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+x \log \left (e^x x\right )-\frac {1}{2} x^2 \log \left (e^x x\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )+\frac {1}{2} \int \frac {e^x}{e^x-e^4 x} \, dx-\frac {1}{2} \int \frac {e^x}{x \left (-e^x+e^4 x\right )} \, dx+2 \left (\frac {1}{2} \int \frac {e^x x}{-e^x+e^4 x} \, dx\right )+e^4 \int \left (\int \frac {x}{-e^x+e^4 x} \, dx\right ) \, dx+e^4 \int \frac {\int \frac {x}{-e^x+e^4 x} \, dx}{x} \, dx-e^4 \int \left (\int \frac {x^2}{-e^x+e^4 x} \, dx\right ) \, dx-e^4 \int \frac {\int \frac {x^2}{-e^x+e^4 x} \, dx}{x} \, dx-\log \left (e^x x\right ) \int \frac {e^x}{e^x-e^4 x} \, dx-\log \left (e^x x\right ) \int \frac {e^x x}{-e^x+e^4 x} \, dx-\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x}{-e^x+e^4 x} \, dx+\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x^2}{-e^x+e^4 x} \, dx-\int \frac {e^x}{e^x-e^4 x} \, dx-\int \frac {e^x x}{-e^x+e^4 x} \, dx+\int \left (\int \frac {e^x}{e^x-e^4 x} \, dx+\frac {\int \frac {e^x}{e^x-e^4 x} \, dx}{x}\right ) \, dx+\int \left (\int \frac {e^x x}{-e^x+e^4 x} \, dx+\frac {\int \frac {e^x x}{-e^x+e^4 x} \, dx}{x}\right ) \, dx\\ &=-x-\frac {x^2}{4}+\frac {x^3}{6}-x \log \left (1-\frac {e^{-4+x}}{x}\right )-\frac {1}{2} x^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+\frac {1}{2} (1+x)^2 \log \left (1-\frac {e^{-4+x}}{x}\right )+x \log \left (e^x x\right )-\frac {1}{2} x^2 \log \left (e^x x\right )-x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right )+\frac {1}{2} \int \frac {e^x}{e^x-e^4 x} \, dx-\frac {1}{2} \int \frac {e^x}{x \left (-e^x+e^4 x\right )} \, dx+2 \left (\frac {1}{2} \int \frac {e^x x}{-e^x+e^4 x} \, dx\right )+e^4 \int \left (\int \frac {x}{-e^x+e^4 x} \, dx\right ) \, dx+e^4 \int \frac {\int \frac {x}{-e^x+e^4 x} \, dx}{x} \, dx-e^4 \int \left (\int \frac {x^2}{-e^x+e^4 x} \, dx\right ) \, dx-e^4 \int \frac {\int \frac {x^2}{-e^x+e^4 x} \, dx}{x} \, dx-\log \left (e^x x\right ) \int \frac {e^x}{e^x-e^4 x} \, dx-\log \left (e^x x\right ) \int \frac {e^x x}{-e^x+e^4 x} \, dx-\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x}{-e^x+e^4 x} \, dx+\left (e^4 \log \left (e^x x\right )\right ) \int \frac {x^2}{-e^x+e^4 x} \, dx-\int \frac {e^x}{e^x-e^4 x} \, dx-\int \frac {e^x x}{-e^x+e^4 x} \, dx+\int \left (\int \frac {e^x}{e^x-e^4 x} \, dx\right ) \, dx+\int \frac {\int \frac {e^x}{e^x-e^4 x} \, dx}{x} \, dx+\int \left (\int \frac {e^x x}{-e^x+e^4 x} \, dx\right ) \, dx+\int \frac {\int \frac {e^x x}{-e^x+e^4 x} \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.50, size = 22, normalized size = 0.73 \begin {gather*} -x \log \left (1-\frac {e^{-4+x}}{x}\right ) \log \left (e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 24, normalized size = 0.80 \begin {gather*} -x \log \left (x e^{x}\right ) \log \left (\frac {{\left (x e^{4} - e^{x}\right )} e^{\left (-4\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 53, normalized size = 1.77 \begin {gather*} -x^{2} \log \left (x e^{4} - e^{x}\right ) + x^{2} \log \relax (x) - x \log \left (x e^{4} - e^{x}\right ) \log \relax (x) + x \log \relax (x)^{2} + 4 \, x^{2} + 4 \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 1357, normalized size = 45.23
method | result | size |
risch | \(x \ln \relax (x )^{2}+4 x \ln \relax (x )+\left (-x \ln \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )+x \ln \relax (x )+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{3}}{2}+4 x \right ) \ln \left ({\mathrm e}^{x}\right )+\frac {\pi ^{2} x \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{3} \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}}{4}-2 i x \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}+\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )}{4}+\frac {i x \ln \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right ) \ln \relax (x )}{2}-\frac {i x \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )}{2}-\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}-\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}-\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )}{4}-\frac {\pi ^{2} x \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )}{4}-x \ln \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right ) \ln \relax (x )+\frac {\pi ^{2} x \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )}{4}-\frac {i x \ln \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right ) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{2}+\frac {i x \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{2}+\frac {i x \ln \relax (x ) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{2}-\frac {i x \ln \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{2}+\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}+\frac {\pi ^{2} x \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}+\frac {\pi ^{2} x \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}+\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}}{4}+\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}-2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \ln \relax (x )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \ln \relax (x )}{2}+2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}+2 i x \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}+\frac {i x \ln \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right ) \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{3} \ln \relax (x )}{2}-\frac {i x \ln \relax (x ) \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}}{2}-\frac {\pi ^{2} x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}}{4}-\frac {\pi ^{2} x \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}}{4}-\frac {\pi ^{2} x \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}-\frac {\pi ^{2} x \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{4}-{\mathrm e}^{x}\right )}{x}\right )^{3} \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}}{4}\) | \(1357\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 42, normalized size = 1.40 \begin {gather*} x \log \relax (x)^{2} + 4 \, x^{2} - {\left (x^{2} + x \log \relax (x)\right )} \log \left (x e^{4} - e^{x}\right ) + {\left (x^{2} + 4 \, x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.07, size = 20, normalized size = 0.67 \begin {gather*} -x\,\ln \left (\frac {x-{\mathrm {e}}^{-4}\,{\mathrm {e}}^x}{x}\right )\,\left (x+\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: CoercionFailed} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________