Optimal. Leaf size=44 \[ \frac {e^{-x+\frac {(1-x) \left (-e^x+x\right )}{\log \left (\frac {x^2}{3}\right )-\log \left (1-x^2\right )}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 39.51, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {e^x (-1+x)+x-x^2-x \log \left (\frac {x^2}{3}\right )+x \log \left (1-x^2\right )}{\log \left (\frac {x^2}{3}\right )-\log \left (1-x^2\right )}} \left (2 e^x-2 x+\left (-1-2 x-x^2\right ) \log ^2\left (\frac {x^2}{3}\right )+\left (-x+x^2+2 x^3+e^x \left (-x^2-x^3\right )\right ) \log \left (1-x^2\right )+\left (-1-2 x-x^2\right ) \log ^2\left (1-x^2\right )+\log \left (\frac {x^2}{3}\right ) \left (x-x^2-2 x^3+e^x \left (x^2+x^3\right )+\left (2+4 x+2 x^2\right ) \log \left (1-x^2\right )\right )\right )}{\left (x^2+x^3\right ) \log ^2\left (\frac {x^2}{3}\right )+\left (-2 x^2-2 x^3\right ) \log \left (\frac {x^2}{3}\right ) \log \left (1-x^2\right )+\left (x^2+x^3\right ) \log ^2\left (1-x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 59, normalized size = 1.34 \begin {gather*} \frac {e^{\left (-\frac {x^{2} - {\left (x - 1\right )} e^{x} + x \log \left (\frac {1}{3} \, x^{2}\right ) - x \log \left (-x^{2} + 1\right ) - x}{\log \left (\frac {1}{3} \, x^{2}\right ) - \log \left (-x^{2} + 1\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 83.72, size = 43, normalized size = 0.98 \begin {gather*} \frac {e^{\left (-x + \frac {x^{2} - x e^{x} - x + e^{x}}{\log \relax (3) - \log \left (x^{2}\right ) + \log \left (-x^{2} + 1\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 6.40, size = 169, normalized size = 3.84
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 x \ln \relax (3)-4 x \ln \relax (x )+2 x \ln \left (-x^{2}+1\right )+2 \,{\mathrm e}^{x} x -2 x^{2}-2 \,{\mathrm e}^{x}+2 x}{i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \ln \relax (3)-4 \ln \relax (x )+2 \ln \left (-x^{2}+1\right )}}}{x}\) | \(169\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {{\left ({\left (x^{2} + 2 \, x + 1\right )} \log \left (\frac {1}{3} \, x^{2}\right )^{2} + {\left (x^{2} + 2 \, x + 1\right )} \log \left (-x^{2} + 1\right )^{2} + {\left (2 \, x^{3} + x^{2} - {\left (x^{3} + x^{2}\right )} e^{x} - 2 \, {\left (x^{2} + 2 \, x + 1\right )} \log \left (-x^{2} + 1\right ) - x\right )} \log \left (\frac {1}{3} \, x^{2}\right ) - {\left (2 \, x^{3} + x^{2} - {\left (x^{3} + x^{2}\right )} e^{x} - x\right )} \log \left (-x^{2} + 1\right ) + 2 \, x - 2 \, e^{x}\right )} e^{\left (-\frac {x^{2} - {\left (x - 1\right )} e^{x} + x \log \left (\frac {1}{3} \, x^{2}\right ) - x \log \left (-x^{2} + 1\right ) - x}{\log \left (\frac {1}{3} \, x^{2}\right ) - \log \left (-x^{2} + 1\right )}\right )}}{{\left (x^{3} + x^{2}\right )} \log \left (\frac {1}{3} \, x^{2}\right )^{2} - 2 \, {\left (x^{3} + x^{2}\right )} \log \left (\frac {1}{3} \, x^{2}\right ) \log \left (-x^{2} + 1\right ) + {\left (x^{3} + x^{2}\right )} \log \left (-x^{2} + 1\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 157, normalized size = 3.57 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {x}{\ln \left (1-x^2\right )-\ln \left (x^2\right )+\ln \relax (3)}}\,{\mathrm {e}}^{\frac {x^2}{\ln \left (1-x^2\right )-\ln \left (x^2\right )+\ln \relax (3)}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{\ln \left (1-x^2\right )-\ln \left (x^2\right )+\ln \relax (3)}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^x}{\ln \left (1-x^2\right )-\ln \left (x^2\right )+\ln \relax (3)}}\,{\left (\frac {x^2}{3}\right )}^{\frac {x}{\ln \left (1-x^2\right )-\ln \left (x^2\right )+\ln \relax (3)}}}{x\,{\left (1-x^2\right )}^{\frac {x}{\ln \left (1-x^2\right )-\ln \left (x^2\right )+\ln \relax (3)}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 17.78, size = 44, normalized size = 1.00 \begin {gather*} \frac {e^{\frac {- x^{2} - x \log {\left (\frac {x^{2}}{3} \right )} + x \log {\left (1 - x^{2} \right )} + x + \left (x - 1\right ) e^{x}}{\log {\left (\frac {x^{2}}{3} \right )} - \log {\left (1 - x^{2} \right )}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________