Optimal. Leaf size=31 \[ \left (2 x+\log \left (-3+\frac {(5+x) \left (3 e^4 x-\log (x)\right )}{3 \log (4)}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 6.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20 x+4 x^2+e^4 \left (-60 x^2-144 x^3-24 x^4\right )+72 x^2 \log (4)+\left (44 x^2+8 x^3\right ) \log (x)+\left (10+2 x+e^4 \left (-30 x-72 x^2-12 x^3\right )+36 x \log (4)+\left (22 x+4 x^2\right ) \log (x)\right ) \log \left (\frac {e^4 \left (15 x+3 x^2\right )-9 \log (4)+(-5-x) \log (x)}{3 \log (4)}\right )}{e^4 \left (-15 x^2-3 x^3\right )+9 x \log (4)+\left (5 x+x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 x+e^4 \left (-60 x^2-144 x^3-24 x^4\right )+x^2 (4+72 \log (4))+\left (44 x^2+8 x^3\right ) \log (x)+\left (10+2 x+e^4 \left (-30 x-72 x^2-12 x^3\right )+36 x \log (4)+\left (22 x+4 x^2\right ) \log (x)\right ) \log \left (\frac {e^4 \left (15 x+3 x^2\right )-9 \log (4)+(-5-x) \log (x)}{3 \log (4)}\right )}{e^4 \left (-15 x^2-3 x^3\right )+9 x \log (4)+\left (5 x+x^2\right ) \log (x)} \, dx\\ &=\int \frac {2 \left (5-36 e^4 x^2-6 e^4 x^3-x \left (-1+15 e^4-18 \log (4)\right )+x (11+2 x) \log (x)\right ) \left (-2 x-\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )\right )}{x \left (3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)\right )} \, dx\\ &=2 \int \frac {\left (5-36 e^4 x^2-6 e^4 x^3-x \left (-1+15 e^4-18 \log (4)\right )+x (11+2 x) \log (x)\right ) \left (-2 x-\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )\right )}{x \left (3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)\right )} \, dx\\ &=2 \int \left (\frac {2 \left (-5+36 e^4 x^2+6 e^4 x^3-x \left (1-15 e^4+18 \log (4)\right )-11 x \log (x)-2 x^2 \log (x)\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}+\frac {\left (-5+36 e^4 x^2+6 e^4 x^3-x \left (1-15 e^4+18 \log (4)\right )-11 x \log (x)-2 x^2 \log (x)\right ) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{x \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {\left (-5+36 e^4 x^2+6 e^4 x^3-x \left (1-15 e^4+18 \log (4)\right )-11 x \log (x)-2 x^2 \log (x)\right ) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{x \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )} \, dx+4 \int \frac {-5+36 e^4 x^2+6 e^4 x^3-x \left (1-15 e^4+18 \log (4)\right )-11 x \log (x)-2 x^2 \log (x)}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx\\ &=2 \int \left (-\frac {5 \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{x \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )}+\frac {36 e^4 x \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}+\frac {6 e^4 x^2 \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}+\frac {\left (-1+15 e^4-18 \log (4)\right ) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}-\frac {2 x \log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}+\frac {11 \log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{-15 e^4 x-3 e^4 x^2+9 \log (4)+5 \log (x)+x \log (x)}\right ) \, dx+4 \int \left (\frac {x (11+2 x)}{5+x}+\frac {-25-\left (1-30 e^4\right ) x^2+3 e^4 x^3-x \left (10-75 e^4-9 \log (4)\right )}{(5+x) \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )}\right ) \, dx\\ &=4 \int \frac {x (11+2 x)}{5+x} \, dx+4 \int \frac {-25-\left (1-30 e^4\right ) x^2+3 e^4 x^3-x \left (10-75 e^4-9 \log (4)\right )}{(5+x) \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )} \, dx-4 \int \frac {x \log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-10 \int \frac {\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{x \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )} \, dx+22 \int \frac {\log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{-15 e^4 x-3 e^4 x^2+9 \log (4)+5 \log (x)+x \log (x)} \, dx+\left (12 e^4\right ) \int \frac {x^2 \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx+\left (72 e^4\right ) \int \frac {x \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-\left (2 \left (1-15 e^4+18 \log (4)\right )\right ) \int \frac {\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx\\ &=4 \int \left (1+2 x-\frac {5}{5+x}\right ) \, dx+4 \int \left (\frac {\left (-1+15 e^4\right ) x}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}+\frac {3 e^4 x^2}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}-\frac {5 \left (1-\frac {9 \log (4)}{5}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)}-\frac {45 \log (4)}{(5+x) \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )}\right ) \, dx-4 \int \frac {x \log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-10 \int \frac {\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{x \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )} \, dx+22 \int \frac {\log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{-15 e^4 x-3 e^4 x^2+9 \log (4)+5 \log (x)+x \log (x)} \, dx+\left (12 e^4\right ) \int \frac {x^2 \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx+\left (72 e^4\right ) \int \frac {x \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-\left (2 \left (1-15 e^4+18 \log (4)\right )\right ) \int \frac {\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx\\ &=4 x+4 x^2-20 \log (5+x)-4 \int \frac {x \log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-10 \int \frac {\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{x \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )} \, dx+22 \int \frac {\log (x) \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{-15 e^4 x-3 e^4 x^2+9 \log (4)+5 \log (x)+x \log (x)} \, dx+\left (12 e^4\right ) \int \frac {x^2}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx+\left (12 e^4\right ) \int \frac {x^2 \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx+\left (72 e^4\right ) \int \frac {x \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-\left (4 \left (1-15 e^4\right )\right ) \int \frac {x}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-(4 (5-9 \log (4))) \int \frac {1}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx-(180 \log (4)) \int \frac {1}{(5+x) \left (15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)\right )} \, dx-\left (2 \left (1-15 e^4+18 \log (4)\right )\right ) \int \frac {\log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )}{15 e^4 x+3 e^4 x^2-9 \log (4)-5 \log (x)-x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 71, normalized size = 2.29 \begin {gather*} -2 \left (-2 x^2-2 x \log \left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )-\frac {1}{2} \log ^2\left (\frac {3 e^4 x (5+x)-9 \log (4)-(5+x) \log (x)}{\log (64)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 71, normalized size = 2.29 \begin {gather*} 4 \, x^{2} + 4 \, x \log \left (\frac {3 \, {\left (x^{2} + 5 \, x\right )} e^{4} - {\left (x + 5\right )} \log \relax (x) - 18 \, \log \relax (2)}{6 \, \log \relax (2)}\right ) + \log \left (\frac {3 \, {\left (x^{2} + 5 \, x\right )} e^{4} - {\left (x + 5\right )} \log \relax (x) - 18 \, \log \relax (2)}{6 \, \log \relax (2)}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (72 \, x^{2} \log \relax (2) + 2 \, x^{2} - 6 \, {\left (2 \, x^{4} + 12 \, x^{3} + 5 \, x^{2}\right )} e^{4} + 2 \, {\left (2 \, x^{3} + 11 \, x^{2}\right )} \log \relax (x) - {\left (3 \, {\left (2 \, x^{3} + 12 \, x^{2} + 5 \, x\right )} e^{4} - 36 \, x \log \relax (2) - {\left (2 \, x^{2} + 11 \, x\right )} \log \relax (x) - x - 5\right )} \log \left (\frac {3 \, {\left (x^{2} + 5 \, x\right )} e^{4} - {\left (x + 5\right )} \log \relax (x) - 18 \, \log \relax (2)}{6 \, \log \relax (2)}\right ) + 10 \, x\right )}}{3 \, {\left (x^{3} + 5 \, x^{2}\right )} e^{4} - 18 \, x \log \relax (2) - {\left (x^{2} + 5 \, x\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.08, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 x^{2}+22 x \right ) \ln \relax (x )+72 x \ln \relax (2)+\left (-12 x^{3}-72 x^{2}-30 x \right ) {\mathrm e}^{4}+2 x +10\right ) \ln \left (\frac {\left (-x -5\right ) \ln \relax (x )-18 \ln \relax (2)+\left (3 x^{2}+15 x \right ) {\mathrm e}^{4}}{6 \ln \relax (2)}\right )+\left (8 x^{3}+44 x^{2}\right ) \ln \relax (x )+144 x^{2} \ln \relax (2)+\left (-24 x^{4}-144 x^{3}-60 x^{2}\right ) {\mathrm e}^{4}+4 x^{2}+20 x}{\left (x^{2}+5 x \right ) \ln \relax (x )+18 x \ln \relax (2)+\left (-3 x^{3}-15 x^{2}\right ) {\mathrm e}^{4}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {72 \, x^{2} \log \relax (2) + 2 \, x^{2} - 6 \, {\left (2 \, x^{4} + 12 \, x^{3} + 5 \, x^{2}\right )} e^{4} + 2 \, {\left (2 \, x^{3} + 11 \, x^{2}\right )} \log \relax (x) - {\left (3 \, {\left (2 \, x^{3} + 12 \, x^{2} + 5 \, x\right )} e^{4} - 36 \, x \log \relax (2) - {\left (2 \, x^{2} + 11 \, x\right )} \log \relax (x) - x - 5\right )} \log \left (\frac {3 \, {\left (x^{2} + 5 \, x\right )} e^{4} - {\left (x + 5\right )} \log \relax (x) - 18 \, \log \relax (2)}{6 \, \log \relax (2)}\right ) + 10 \, x}{3 \, {\left (x^{3} + 5 \, x^{2}\right )} e^{4} - 18 \, x \log \relax (2) - {\left (x^{2} + 5 \, x\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.66, size = 38, normalized size = 1.23 \begin {gather*} {\left (2\,x+\ln \left (-\frac {3\,\ln \relax (2)+\frac {\ln \relax (x)\,\left (x+5\right )}{6}-\frac {{\mathrm {e}}^4\,\left (3\,x^2+15\,x\right )}{6}}{\ln \relax (2)}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.76, size = 76, normalized size = 2.45 \begin {gather*} 4 x^{2} + 4 x \log {\left (\frac {\frac {\left (- x - 5\right ) \log {\relax (x )}}{6} + \frac {\left (3 x^{2} + 15 x\right ) e^{4}}{6} - 3 \log {\relax (2 )}}{\log {\relax (2 )}} \right )} + \log {\left (\frac {\frac {\left (- x - 5\right ) \log {\relax (x )}}{6} + \frac {\left (3 x^{2} + 15 x\right ) e^{4}}{6} - 3 \log {\relax (2 )}}{\log {\relax (2 )}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________