Optimal. Leaf size=23 \[ \frac {1}{3} \left (-1+e^{4-x}\right )^2 \left (3+\log \left (\frac {4}{e^4}\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 51, normalized size of antiderivative = 2.22, number of steps used = 7, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {12, 2194} \begin {gather*} e^{8-2 x}-2 e^{4-x}-\frac {1}{3} e^{8-2 x} (4-\log (4))+\frac {2}{3} e^{4-x} (4-\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-6 e^{8-2 x}+6 e^{4-x}+\left (-2 e^{8-2 x}+2 e^{4-x}\right ) \log \left (\frac {4}{e^4}\right )\right ) \, dx\\ &=-\left (2 \int e^{8-2 x} \, dx\right )+2 \int e^{4-x} \, dx+\frac {1}{3} (-4+\log (4)) \int \left (-2 e^{8-2 x}+2 e^{4-x}\right ) \, dx\\ &=e^{8-2 x}-2 e^{4-x}+\frac {1}{3} (2 (4-\log (4))) \int e^{8-2 x} \, dx-\frac {1}{3} (2 (4-\log (4))) \int e^{4-x} \, dx\\ &=e^{8-2 x}-2 e^{4-x}-\frac {1}{3} e^{8-2 x} (4-\log (4))+\frac {2}{3} e^{4-x} (4-\log (4))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 29, normalized size = 1.26 \begin {gather*} \frac {2}{3} \left (\frac {1}{2} e^{8-2 x}-e^{4-x}\right ) (-1+\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 29, normalized size = 1.26 \begin {gather*} -\frac {2}{3} \, {\left (2 \, \log \relax (2) - 1\right )} e^{\left (-x + 4\right )} + \frac {1}{3} \, {\left (2 \, \log \relax (2) - 1\right )} e^{\left (-2 \, x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 39, normalized size = 1.70 \begin {gather*} -\frac {1}{3} \, {\left (2 \, e^{\left (-x + 4\right )} - e^{\left (-2 \, x + 8\right )}\right )} \log \left (4 \, e^{\left (-4\right )}\right ) - 2 \, e^{\left (-x + 4\right )} + e^{\left (-2 \, x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.30
method | result | size |
norman | \(\left (-\frac {4 \ln \relax (2)}{3}+\frac {2}{3}\right ) {\mathrm e}^{-x +4}+\left (\frac {2 \ln \relax (2)}{3}-\frac {1}{3}\right ) {\mathrm e}^{-2 x +8}\) | \(30\) |
derivativedivides | \(-\frac {\left (2 \ln \left (4 \,{\mathrm e}^{-4}\right )+6\right ) \left (-\frac {{\mathrm e}^{-2 x +8}}{2}+{\mathrm e}^{-x +4}\right )}{3}\) | \(31\) |
risch | \(\frac {2 \,{\mathrm e}^{-2 x +8} \ln \relax (2)}{3}-\frac {{\mathrm e}^{-2 x +8}}{3}-\frac {4 \,{\mathrm e}^{-x +4} \ln \relax (2)}{3}+\frac {2 \,{\mathrm e}^{-x +4}}{3}\) | \(38\) |
default | \({\mathrm e}^{-2 x +8}+\frac {\ln \left (4 \,{\mathrm e}^{-4}\right ) {\mathrm e}^{-2 x +8}}{3}-\frac {2 \ln \left (4 \,{\mathrm e}^{-4}\right ) {\mathrm e}^{-x +4}}{3}-2 \,{\mathrm e}^{-x +4}\) | \(50\) |
meijerg | \(-\frac {{\mathrm e}^{-2 x +2 x \,{\mathrm e}^{8}} \left (\ln \left (4 \,{\mathrm e}^{-4}\right )+3\right ) \left (1-{\mathrm e}^{-2 x \,{\mathrm e}^{8}}\right )}{3}+\left (\frac {2 \ln \left (4 \,{\mathrm e}^{-4}\right ) {\mathrm e}^{4}}{3}+2 \,{\mathrm e}^{4}\right ) \left (1-{\mathrm e}^{-x}\right )\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 39, normalized size = 1.70 \begin {gather*} -\frac {1}{3} \, {\left (2 \, e^{\left (-x + 4\right )} - e^{\left (-2 \, x + 8\right )}\right )} \log \left (4 \, e^{\left (-4\right )}\right ) - 2 \, e^{\left (-x + 4\right )} + e^{\left (-2 \, x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 28, normalized size = 1.22 \begin {gather*} {\mathrm {e}}^{8-2\,x}\,\left (\frac {\ln \relax (4)}{3}-\frac {1}{3}\right )-{\mathrm {e}}^{4-x}\,\left (\frac {\ln \left (16\right )}{3}-\frac {2}{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 1.17 \begin {gather*} \frac {\left (6 - 12 \log {\relax (2 )}\right ) e^{4 - x}}{9} + \frac {\left (-3 + 6 \log {\relax (2 )}\right ) e^{8 - 2 x}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________