Optimal. Leaf size=23 \[ -\frac {x}{7-2 x-2 \log (x)+\log (-2 (-x+\log (2)))} \]
________________________________________________________________________________________
Rubi [F] time = 0.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x-9 \log (2)+(-2 x+2 \log (2)) \log (x)+(x-\log (2)) \log (2 x-2 \log (2))}{-49 x+28 x^2-4 x^3+\left (49-28 x+4 x^2\right ) \log (2)+(-4 x+4 \log (2)) \log ^2(x)+\left (-14 x+4 x^2+(14-4 x) \log (2)\right ) \log (2 x-2 \log (2))+(-x+\log (2)) \log ^2(2 x-2 \log (2))+\log (x) \left (28 x-8 x^2+(-28+8 x) \log (2)+(4 x-4 \log (2)) \log (2 x-2 \log (2))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x+\log (512)+2 (x-\log (2)) \log (x)+(-x+\log (2)) \log (2 x-\log (4))}{(x-\log (2)) (7-2 x-2 \log (x)+\log (2 x-\log (4)))^2} \, dx\\ &=\int \left (\frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))}+\frac {-2 x^2-x (1-\log (4))+\log (4)}{(x-\log (2)) (7-2 x-2 \log (x)+\log (2 x-\log (4)))^2}\right ) \, dx\\ &=\int \frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))} \, dx+\int \frac {-2 x^2-x (1-\log (4))+\log (4)}{(x-\log (2)) (7-2 x-2 \log (x)+\log (2 x-\log (4)))^2} \, dx\\ &=\int \left (-\frac {1}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2}-\frac {2 x}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2}+\frac {\log (2)}{(x-\log (2)) (-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2}\right ) \, dx+\int \frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))} \, dx\\ &=-\left (2 \int \frac {x}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2} \, dx\right )+\log (2) \int \frac {1}{(x-\log (2)) (-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2} \, dx-\int \frac {1}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2} \, dx+\int \frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 43, normalized size = 1.87 \begin {gather*} \frac {x (2 x-\log (4))}{2 (x-\log (2)) (-7+2 x+2 \log (x)-\log (2 x-\log (4)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 24, normalized size = 1.04 \begin {gather*} \frac {x}{2 \, x - \log \left (2 \, x - 2 \, \log \relax (2)\right ) + 2 \, \log \relax (x) - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 26, normalized size = 1.13 \begin {gather*} \frac {x}{2 \, x - \log \relax (2) - \log \left (x - \log \relax (2)\right ) + 2 \, \log \relax (x) - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 1.09
method | result | size |
risch | \(\frac {x}{2 \ln \relax (x )-\ln \left (-2 \ln \relax (2)+2 x \right )+2 x -7}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 26, normalized size = 1.13 \begin {gather*} \frac {x}{2 \, x - \log \relax (2) - \log \left (x - \log \relax (2)\right ) + 2 \, \log \relax (x) - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {8\,x-9\,\ln \relax (2)-\ln \relax (x)\,\left (2\,x-2\,\ln \relax (2)\right )+\ln \left (2\,x-2\,\ln \relax (2)\right )\,\left (x-\ln \relax (2)\right )}{49\,x-\ln \relax (2)\,\left (4\,x^2-28\,x+49\right )+\ln \left (2\,x-2\,\ln \relax (2)\right )\,\left (14\,x+\ln \relax (2)\,\left (4\,x-14\right )-4\,x^2\right )-\ln \relax (x)\,\left (28\,x+\ln \relax (2)\,\left (8\,x-28\right )+\ln \left (2\,x-2\,\ln \relax (2)\right )\,\left (4\,x-4\,\ln \relax (2)\right )-8\,x^2\right )+{\ln \relax (x)}^2\,\left (4\,x-4\,\ln \relax (2)\right )+{\ln \left (2\,x-2\,\ln \relax (2)\right )}^2\,\left (x-\ln \relax (2)\right )-28\,x^2+4\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.96 \begin {gather*} - \frac {x}{- 2 x - 2 \log {\relax (x )} + \log {\left (2 x - 2 \log {\relax (2 )} \right )} + 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________