3.95.62 \(\int \frac {8 x-9 \log (2)+(-2 x+2 \log (2)) \log (x)+(x-\log (2)) \log (2 x-2 \log (2))}{-49 x+28 x^2-4 x^3+(49-28 x+4 x^2) \log (2)+(-4 x+4 \log (2)) \log ^2(x)+(-14 x+4 x^2+(14-4 x) \log (2)) \log (2 x-2 \log (2))+(-x+\log (2)) \log ^2(2 x-2 \log (2))+\log (x) (28 x-8 x^2+(-28+8 x) \log (2)+(4 x-4 \log (2)) \log (2 x-2 \log (2)))} \, dx\)

Optimal. Leaf size=23 \[ -\frac {x}{7-2 x-2 \log (x)+\log (-2 (-x+\log (2)))} \]

________________________________________________________________________________________

Rubi [F]  time = 0.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x-9 \log (2)+(-2 x+2 \log (2)) \log (x)+(x-\log (2)) \log (2 x-2 \log (2))}{-49 x+28 x^2-4 x^3+\left (49-28 x+4 x^2\right ) \log (2)+(-4 x+4 \log (2)) \log ^2(x)+\left (-14 x+4 x^2+(14-4 x) \log (2)\right ) \log (2 x-2 \log (2))+(-x+\log (2)) \log ^2(2 x-2 \log (2))+\log (x) \left (28 x-8 x^2+(-28+8 x) \log (2)+(4 x-4 \log (2)) \log (2 x-2 \log (2))\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(8*x - 9*Log[2] + (-2*x + 2*Log[2])*Log[x] + (x - Log[2])*Log[2*x - 2*Log[2]])/(-49*x + 28*x^2 - 4*x^3 + (
49 - 28*x + 4*x^2)*Log[2] + (-4*x + 4*Log[2])*Log[x]^2 + (-14*x + 4*x^2 + (14 - 4*x)*Log[2])*Log[2*x - 2*Log[2
]] + (-x + Log[2])*Log[2*x - 2*Log[2]]^2 + Log[x]*(28*x - 8*x^2 + (-28 + 8*x)*Log[2] + (4*x - 4*Log[2])*Log[2*
x - 2*Log[2]])),x]

[Out]

-Defer[Int][(-7 + 2*x + 2*Log[x] - Log[2*x - Log[4]])^(-2), x] - 2*Defer[Int][x/(-7 + 2*x + 2*Log[x] - Log[2*x
 - Log[4]])^2, x] + Log[2]*Defer[Int][1/((x - Log[2])*(-7 + 2*x + 2*Log[x] - Log[2*x - Log[4]])^2), x] + Defer
[Int][(-7 + 2*x + 2*Log[x] - Log[2*x - Log[4]])^(-1), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x+\log (512)+2 (x-\log (2)) \log (x)+(-x+\log (2)) \log (2 x-\log (4))}{(x-\log (2)) (7-2 x-2 \log (x)+\log (2 x-\log (4)))^2} \, dx\\ &=\int \left (\frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))}+\frac {-2 x^2-x (1-\log (4))+\log (4)}{(x-\log (2)) (7-2 x-2 \log (x)+\log (2 x-\log (4)))^2}\right ) \, dx\\ &=\int \frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))} \, dx+\int \frac {-2 x^2-x (1-\log (4))+\log (4)}{(x-\log (2)) (7-2 x-2 \log (x)+\log (2 x-\log (4)))^2} \, dx\\ &=\int \left (-\frac {1}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2}-\frac {2 x}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2}+\frac {\log (2)}{(x-\log (2)) (-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2}\right ) \, dx+\int \frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))} \, dx\\ &=-\left (2 \int \frac {x}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2} \, dx\right )+\log (2) \int \frac {1}{(x-\log (2)) (-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2} \, dx-\int \frac {1}{(-7+2 x+2 \log (x)-\log (2 x-\log (4)))^2} \, dx+\int \frac {1}{-7+2 x+2 \log (x)-\log (2 x-\log (4))} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.89, size = 43, normalized size = 1.87 \begin {gather*} \frac {x (2 x-\log (4))}{2 (x-\log (2)) (-7+2 x+2 \log (x)-\log (2 x-\log (4)))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(8*x - 9*Log[2] + (-2*x + 2*Log[2])*Log[x] + (x - Log[2])*Log[2*x - 2*Log[2]])/(-49*x + 28*x^2 - 4*x
^3 + (49 - 28*x + 4*x^2)*Log[2] + (-4*x + 4*Log[2])*Log[x]^2 + (-14*x + 4*x^2 + (14 - 4*x)*Log[2])*Log[2*x - 2
*Log[2]] + (-x + Log[2])*Log[2*x - 2*Log[2]]^2 + Log[x]*(28*x - 8*x^2 + (-28 + 8*x)*Log[2] + (4*x - 4*Log[2])*
Log[2*x - 2*Log[2]])),x]

[Out]

(x*(2*x - Log[4]))/(2*(x - Log[2])*(-7 + 2*x + 2*Log[x] - Log[2*x - Log[4]]))

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 24, normalized size = 1.04 \begin {gather*} \frac {x}{2 \, x - \log \left (2 \, x - 2 \, \log \relax (2)\right ) + 2 \, \log \relax (x) - 7} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*log(2)-2*x)*log(x)+(x-log(2))*log(-2*log(2)+2*x)-9*log(2)+8*x)/((4*log(2)-4*x)*log(x)^2+((-4*log
(2)+4*x)*log(-2*log(2)+2*x)+(8*x-28)*log(2)-8*x^2+28*x)*log(x)+(log(2)-x)*log(-2*log(2)+2*x)^2+((-4*x+14)*log(
2)+4*x^2-14*x)*log(-2*log(2)+2*x)+(4*x^2-28*x+49)*log(2)-4*x^3+28*x^2-49*x),x, algorithm="fricas")

[Out]

x/(2*x - log(2*x - 2*log(2)) + 2*log(x) - 7)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 26, normalized size = 1.13 \begin {gather*} \frac {x}{2 \, x - \log \relax (2) - \log \left (x - \log \relax (2)\right ) + 2 \, \log \relax (x) - 7} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*log(2)-2*x)*log(x)+(x-log(2))*log(-2*log(2)+2*x)-9*log(2)+8*x)/((4*log(2)-4*x)*log(x)^2+((-4*log
(2)+4*x)*log(-2*log(2)+2*x)+(8*x-28)*log(2)-8*x^2+28*x)*log(x)+(log(2)-x)*log(-2*log(2)+2*x)^2+((-4*x+14)*log(
2)+4*x^2-14*x)*log(-2*log(2)+2*x)+(4*x^2-28*x+49)*log(2)-4*x^3+28*x^2-49*x),x, algorithm="giac")

[Out]

x/(2*x - log(2) - log(x - log(2)) + 2*log(x) - 7)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 25, normalized size = 1.09




method result size



risch \(\frac {x}{2 \ln \relax (x )-\ln \left (-2 \ln \relax (2)+2 x \right )+2 x -7}\) \(25\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*ln(2)-2*x)*ln(x)+(x-ln(2))*ln(-2*ln(2)+2*x)-9*ln(2)+8*x)/((4*ln(2)-4*x)*ln(x)^2+((-4*ln(2)+4*x)*ln(-2*
ln(2)+2*x)+(8*x-28)*ln(2)-8*x^2+28*x)*ln(x)+(ln(2)-x)*ln(-2*ln(2)+2*x)^2+((-4*x+14)*ln(2)+4*x^2-14*x)*ln(-2*ln
(2)+2*x)+(4*x^2-28*x+49)*ln(2)-4*x^3+28*x^2-49*x),x,method=_RETURNVERBOSE)

[Out]

x/(2*ln(x)-ln(-2*ln(2)+2*x)+2*x-7)

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 26, normalized size = 1.13 \begin {gather*} \frac {x}{2 \, x - \log \relax (2) - \log \left (x - \log \relax (2)\right ) + 2 \, \log \relax (x) - 7} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*log(2)-2*x)*log(x)+(x-log(2))*log(-2*log(2)+2*x)-9*log(2)+8*x)/((4*log(2)-4*x)*log(x)^2+((-4*log
(2)+4*x)*log(-2*log(2)+2*x)+(8*x-28)*log(2)-8*x^2+28*x)*log(x)+(log(2)-x)*log(-2*log(2)+2*x)^2+((-4*x+14)*log(
2)+4*x^2-14*x)*log(-2*log(2)+2*x)+(4*x^2-28*x+49)*log(2)-4*x^3+28*x^2-49*x),x, algorithm="maxima")

[Out]

x/(2*x - log(2) - log(x - log(2)) + 2*log(x) - 7)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {8\,x-9\,\ln \relax (2)-\ln \relax (x)\,\left (2\,x-2\,\ln \relax (2)\right )+\ln \left (2\,x-2\,\ln \relax (2)\right )\,\left (x-\ln \relax (2)\right )}{49\,x-\ln \relax (2)\,\left (4\,x^2-28\,x+49\right )+\ln \left (2\,x-2\,\ln \relax (2)\right )\,\left (14\,x+\ln \relax (2)\,\left (4\,x-14\right )-4\,x^2\right )-\ln \relax (x)\,\left (28\,x+\ln \relax (2)\,\left (8\,x-28\right )+\ln \left (2\,x-2\,\ln \relax (2)\right )\,\left (4\,x-4\,\ln \relax (2)\right )-8\,x^2\right )+{\ln \relax (x)}^2\,\left (4\,x-4\,\ln \relax (2)\right )+{\ln \left (2\,x-2\,\ln \relax (2)\right )}^2\,\left (x-\ln \relax (2)\right )-28\,x^2+4\,x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(8*x - 9*log(2) - log(x)*(2*x - 2*log(2)) + log(2*x - 2*log(2))*(x - log(2)))/(49*x - log(2)*(4*x^2 - 28*
x + 49) + log(2*x - 2*log(2))*(14*x + log(2)*(4*x - 14) - 4*x^2) - log(x)*(28*x + log(2)*(8*x - 28) + log(2*x
- 2*log(2))*(4*x - 4*log(2)) - 8*x^2) + log(x)^2*(4*x - 4*log(2)) + log(2*x - 2*log(2))^2*(x - log(2)) - 28*x^
2 + 4*x^3),x)

[Out]

int(-(8*x - 9*log(2) - log(x)*(2*x - 2*log(2)) + log(2*x - 2*log(2))*(x - log(2)))/(49*x - log(2)*(4*x^2 - 28*
x + 49) + log(2*x - 2*log(2))*(14*x + log(2)*(4*x - 14) - 4*x^2) - log(x)*(28*x + log(2)*(8*x - 28) + log(2*x
- 2*log(2))*(4*x - 4*log(2)) - 8*x^2) + log(x)^2*(4*x - 4*log(2)) + log(2*x - 2*log(2))^2*(x - log(2)) - 28*x^
2 + 4*x^3), x)

________________________________________________________________________________________

sympy [A]  time = 0.33, size = 22, normalized size = 0.96 \begin {gather*} - \frac {x}{- 2 x - 2 \log {\relax (x )} + \log {\left (2 x - 2 \log {\relax (2 )} \right )} + 7} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*ln(2)-2*x)*ln(x)+(x-ln(2))*ln(-2*ln(2)+2*x)-9*ln(2)+8*x)/((4*ln(2)-4*x)*ln(x)**2+((-4*ln(2)+4*x)
*ln(-2*ln(2)+2*x)+(8*x-28)*ln(2)-8*x**2+28*x)*ln(x)+(ln(2)-x)*ln(-2*ln(2)+2*x)**2+((-4*x+14)*ln(2)+4*x**2-14*x
)*ln(-2*ln(2)+2*x)+(4*x**2-28*x+49)*ln(2)-4*x**3+28*x**2-49*x),x)

[Out]

-x/(-2*x - 2*log(x) + log(2*x - 2*log(2)) + 7)

________________________________________________________________________________________