Optimal. Leaf size=35 \[ 1-\frac {e^{2+\frac {e^x}{2 x}+2 x}-\frac {e^{2 x}}{x}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (-4+4 x)+e^{\frac {e^x+4 x}{2 x}} \left (e^{3 x} (1-x)+e^{2 x} \left (2 x-4 x^2\right )\right )}{2 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{2 x} (-4+4 x)+e^{\frac {e^x+4 x}{2 x}} \left (e^{3 x} (1-x)+e^{2 x} \left (2 x-4 x^2\right )\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (-\frac {e^{2+\frac {e^x}{2 x}+3 x} (-1+x)}{x^3}-\frac {2 e^{2 x} \left (2-2 x-e^{2+\frac {e^x}{2 x}} x+2 e^{2+\frac {e^x}{2 x}} x^2\right )}{x^3}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x} (-1+x)}{x^3} \, dx\right )-\int \frac {e^{2 x} \left (2-2 x-e^{2+\frac {e^x}{2 x}} x+2 e^{2+\frac {e^x}{2 x}} x^2\right )}{x^3} \, dx\\ &=-\left (\frac {1}{2} \int \left (-\frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^3}+\frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^2}\right ) \, dx\right )-\int \left (-\frac {2 e^{2 x} (-1+x)}{x^3}+\frac {e^{2 x+\frac {e^x+4 x}{2 x}} (-1+2 x)}{x^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^3} \, dx-\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^2} \, dx+2 \int \frac {e^{2 x} (-1+x)}{x^3} \, dx-\int \frac {e^{2 x+\frac {e^x+4 x}{2 x}} (-1+2 x)}{x^2} \, dx\\ &=\frac {e^{2 x}}{x^2}+\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^3} \, dx-\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^2} \, dx-\int \frac {e^{\frac {e^x+4 x+4 x^2}{2 x}} (-1+2 x)}{x^2} \, dx\\ &=\frac {e^{2 x}}{x^2}+\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^3} \, dx-\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^2} \, dx-\int \left (-\frac {e^{\frac {e^x+4 x+4 x^2}{2 x}}}{x^2}+\frac {2 e^{\frac {e^x+4 x+4 x^2}{2 x}}}{x}\right ) \, dx\\ &=\frac {e^{2 x}}{x^2}+\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^3} \, dx-\frac {1}{2} \int \frac {e^{2+\frac {e^x}{2 x}+3 x}}{x^2} \, dx-2 \int \frac {e^{\frac {e^x+4 x+4 x^2}{2 x}}}{x} \, dx+\int \frac {e^{\frac {e^x+4 x+4 x^2}{2 x}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 28, normalized size = 0.80 \begin {gather*} -\frac {e^{2 x} \left (-1+e^{2+\frac {e^x}{2 x}} x\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 30, normalized size = 0.86 \begin {gather*} -\frac {x e^{\left (2 \, x + \frac {4 \, x + e^{x}}{2 \, x}\right )} - e^{\left (2 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x - 1\right )} e^{\left (2 \, x\right )} - {\left ({\left (x - 1\right )} e^{\left (3 \, x\right )} + 2 \, {\left (2 \, x^{2} - x\right )} e^{\left (2 \, x\right )}\right )} e^{\left (\frac {4 \, x + e^{x}}{2 \, x}\right )}}{2 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 32, normalized size = 0.91
method | result | size |
risch | \(\frac {{\mathrm e}^{2 x}}{x^{2}}-\frac {{\mathrm e}^{\frac {4 x^{2}+{\mathrm e}^{x}+4 x}{2 x}}}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.43, size = 33, normalized size = 0.94 \begin {gather*} -\frac {e^{\left (2 \, x + \frac {e^{x}}{2 \, x} + 2\right )}}{x} + 4 \, \Gamma \left (-1, -2 \, x\right ) + 8 \, \Gamma \left (-2, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.26, size = 25, normalized size = 0.71 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}-x\,{\mathrm {e}}^{2\,x+\frac {{\mathrm {e}}^x}{2\,x}+2}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 0.74 \begin {gather*} - \frac {e^{2 x} e^{\frac {2 x + \frac {e^{x}}{2}}{x}}}{x} + \frac {e^{2 x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________