Optimal. Leaf size=33 \[ \frac {e^{\left .\frac {1}{5}\right /x}+x}{\log \left (\frac {3+\frac {2}{x}}{5+\log (-1+2 x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 21.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-50 x^2+120 x^3+30 x^4+e^{\left .\frac {1}{5}\right /x} \left (-50 x+120 x^2+30 x^3\right )+\left (-10 x^2+20 x^3+e^{\left .\frac {1}{5}\right /x} \left (-10 x+20 x^2\right )\right ) \log (-1+2 x)+\left (-50 x^2+25 x^3+150 x^4+e^{\left .\frac {1}{5}\right /x} \left (10-5 x-30 x^2\right )+\left (-10 x^2+5 x^3+30 x^4+e^{\left .\frac {1}{5}\right /x} \left (2-x-6 x^2\right )\right ) \log (-1+2 x)\right ) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}{\left (-50 x^2+25 x^3+150 x^4+\left (-10 x^2+5 x^3+30 x^4\right ) \log (-1+2 x)\right ) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 x^2-120 x^3-30 x^4-10 e^{\left .\frac {1}{5}\right /x} x \left (-5+12 x+3 x^2\right )-10 x \left (e^{\left .\frac {1}{5}\right /x}+x\right ) (-1+2 x) \log (-1+2 x)+\left (e^{\left .\frac {1}{5}\right /x}-5 x^2\right ) \left (-2+x+6 x^2\right ) (5+\log (-1+2 x)) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}{5 x^2 \left (2-x-6 x^2\right ) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx\\ &=\frac {1}{5} \int \frac {50 x^2-120 x^3-30 x^4-10 e^{\left .\frac {1}{5}\right /x} x \left (-5+12 x+3 x^2\right )-10 x \left (e^{\left .\frac {1}{5}\right /x}+x\right ) (-1+2 x) \log (-1+2 x)+\left (e^{\left .\frac {1}{5}\right /x}-5 x^2\right ) \left (-2+x+6 x^2\right ) (5+\log (-1+2 x)) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}{x^2 \left (2-x-6 x^2\right ) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx\\ &=\frac {1}{5} \int \left (-\frac {50}{(-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {120 x}{(-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {30 x^2}{(-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {10 \log (-1+2 x)}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {5}{\log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {e^{\left .\frac {1}{5}\right /x} \left (-50 x+120 x^2+30 x^3-10 x \log (-1+2 x)+20 x^2 \log (-1+2 x)+10 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-5 x \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-30 x^2 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )+2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-x \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-6 x^2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )\right )}{x^2 (-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{\left .\frac {1}{5}\right /x} \left (-50 x+120 x^2+30 x^3-10 x \log (-1+2 x)+20 x^2 \log (-1+2 x)+10 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-5 x \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-30 x^2 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )+2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-x \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-6 x^2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )\right )}{x^2 (-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+2 \int \frac {\log (-1+2 x)}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+6 \int \frac {x^2}{(-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx-10 \int \frac {1}{(-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+24 \int \frac {x}{(-1+2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx\\ &=\frac {e^{\left .\frac {1}{5}\right /x} \left (10 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-5 x \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-30 x^2 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )+2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-x \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-6 x^2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )\right )}{(1-2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+2 \int \frac {\log (-1+2 x)}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+6 \int \left (\frac {1}{6 (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {1}{14 (-1+2 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}-\frac {4}{21 (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}\right ) \, dx-10 \int \left (\frac {2}{7 (-1+2 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}-\frac {3}{7 (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}\right ) \, dx+24 \int \left (\frac {1}{7 (-1+2 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {2}{7 (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}\right ) \, dx+\int \frac {1}{\log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx\\ &=\frac {e^{\left .\frac {1}{5}\right /x} \left (10 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-5 x \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-30 x^2 \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )+2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-x \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )-6 x^2 \log (-1+2 x) \log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )\right )}{(1-2 x) (2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )}+\frac {3}{7} \int \frac {1}{(-1+2 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx-\frac {8}{7} \int \frac {1}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+2 \int \frac {\log (-1+2 x)}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx-\frac {20}{7} \int \frac {1}{(-1+2 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+\frac {24}{7} \int \frac {1}{(-1+2 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+\frac {30}{7} \int \frac {1}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+\frac {48}{7} \int \frac {1}{(2+3 x) (5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+\int \frac {1}{(5+\log (-1+2 x)) \log ^2\left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx+\int \frac {1}{\log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 35, normalized size = 1.06 \begin {gather*} \frac {e^{\left .\frac {1}{5}\right /x}+x}{\log \left (\frac {2+3 x}{5 x+x \log (-1+2 x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 32, normalized size = 0.97 \begin {gather*} \frac {x + e^{\left (\frac {1}{5 \, x}\right )}}{\log \left (\frac {3 \, x + 2}{x \log \left (2 \, x - 1\right ) + 5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.82, size = 34, normalized size = 1.03 \begin {gather*} -\frac {x + e^{\left (\frac {1}{5 \, x}\right )}}{\log \left (x \log \left (2 \, x - 1\right ) + 5 \, x\right ) - \log \left (3 \, x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.67, size = 314, normalized size = 9.52
method | result | size |
risch | \(\frac {2 i \left ({\mathrm e}^{\frac {1}{5 x}}+x \right )}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{\ln \left (2 x -1\right )+5}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{x \left (\ln \left (2 x -1\right )+5\right )}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{x \left (\ln \left (2 x -1\right )+5\right )}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (\frac {2}{3}+x \right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (2 x -1\right )+5}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{\ln \left (2 x -1\right )+5}\right )-\pi \,\mathrm {csgn}\left (i \left (\frac {2}{3}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{\ln \left (2 x -1\right )+5}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (2 x -1\right )+5}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{\ln \left (2 x -1\right )+5}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{\ln \left (2 x -1\right )+5}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{\ln \left (2 x -1\right )+5}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{x \left (\ln \left (2 x -1\right )+5\right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\frac {2}{3}+x \right )}{x \left (\ln \left (2 x -1\right )+5\right )}\right )^{3}-2 i \ln \relax (x )+2 i \ln \left (\frac {2}{3}+x \right )+2 i \ln \relax (3)-2 i \ln \left (\ln \left (2 x -1\right )+5\right )}\) | \(314\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 33, normalized size = 1.00 \begin {gather*} \frac {x + e^{\left (\frac {1}{5 \, x}\right )}}{\log \left (3 \, x + 2\right ) - \log \relax (x) - \log \left (\log \left (2 \, x - 1\right ) + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \left (2\,x-1\right )\,\left ({\mathrm {e}}^{\frac {1}{5\,x}}\,\left (10\,x-20\,x^2\right )+10\,x^2-20\,x^3\right )-{\mathrm {e}}^{\frac {1}{5\,x}}\,\left (30\,x^3+120\,x^2-50\,x\right )+50\,x^2-120\,x^3-30\,x^4+\ln \left (\frac {3\,x+2}{5\,x+x\,\ln \left (2\,x-1\right )}\right )\,\left (\ln \left (2\,x-1\right )\,\left ({\mathrm {e}}^{\frac {1}{5\,x}}\,\left (6\,x^2+x-2\right )+10\,x^2-5\,x^3-30\,x^4\right )+{\mathrm {e}}^{\frac {1}{5\,x}}\,\left (30\,x^2+5\,x-10\right )+50\,x^2-25\,x^3-150\,x^4\right )}{{\ln \left (\frac {3\,x+2}{5\,x+x\,\ln \left (2\,x-1\right )}\right )}^2\,\left (\ln \left (2\,x-1\right )\,\left (30\,x^4+5\,x^3-10\,x^2\right )-50\,x^2+25\,x^3+150\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.68, size = 44, normalized size = 1.33 \begin {gather*} \frac {x}{\log {\left (\frac {3 x + 2}{x \log {\left (2 x - 1 \right )} + 5 x} \right )}} + \frac {e^{\frac {1}{5 x}}}{\log {\left (\frac {3 x + 2}{x \log {\left (2 x - 1 \right )} + 5 x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________