3.95.45 7938+17406x36774x2+22422x36186x4+906x582x6+2x7+(4861188x+1926x2960x3+222x428x5+2x6)log(x)243x+405x2270x3+90x415x5+x6dx

Optimal. Leaf size=21 (3(323x)2+x+log(x))2

________________________________________________________________________________________

Rubi [B]  time = 0.75, antiderivative size = 79, normalized size of antiderivative = 3.76, number of steps used = 21, number of rules used = 12, integrand size = 98, number of rulesintegrand size = 0.122, Rules used = {6688, 12, 6742, 1850, 1620, 2357, 2295, 2319, 44, 2314, 31, 2301} x254x17043x+1872(3x)2864(3x)3+144(3x)4+log2(x)+24xlog(x)3x+2xlog(x)24log(x)(3x)230log(x)

Antiderivative was successfully verified.

[In]

Int[(7938 + 17406*x - 36774*x^2 + 22422*x^3 - 6186*x^4 + 906*x^5 - 82*x^6 + 2*x^7 + (-486 - 1188*x + 1926*x^2
- 960*x^3 + 222*x^4 - 28*x^5 + 2*x^6)*Log[x])/(-243*x + 405*x^2 - 270*x^3 + 90*x^4 - 15*x^5 + x^6),x]

[Out]

144/(3 - x)^4 - 864/(3 - x)^3 + 1872/(3 - x)^2 - 1704/(3 - x) - 54*x + x^2 - 30*Log[x] - (24*Log[x])/(3 - x)^2
 + 2*x*Log[x] + (24*x*Log[x])/(3 - x) + Log[x]^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 1620

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2314

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[(x*(d + e*x^r)^(q
+ 1)*(a + b*Log[c*x^n]))/d, x] - Dist[(b*n)/d, Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]

Rule 2319

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[((d + e*x)^(q + 1
)*(a + b*Log[c*x^n])^p)/(e*(q + 1)), x] - Dist[(b*n*p)/(e*(q + 1)), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2357

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=2(27+84x54x2+8x3x4)(147+135x33x2+x3+(3+x)2log(x))(3x)5xdx=2(27+84x54x2+8x3x4)(147+135x33x2+x3+(3+x)2log(x))(3x)5xdx=2(135(2784x+54x28x3+x4)(3+x)5147(2784x+54x28x3+x4)(3+x)5x33x(2784x+54x28x3+x4)(3+x)5+x2(2784x+54x28x3+x4)(3+x)5+(2784x+54x28x3+x4)log(x)(3+x)3x)dx=2x2(2784x+54x28x3+x4)(3+x)5dx+2(2784x+54x28x3+x4)log(x)(3+x)3xdx66x(2784x+54x28x3+x4)(3+x)5dx+2702784x+54x28x3+x4(3+x)5dx2942784x+54x28x3+x4(3+x)5xdx=2(7+648(3+x)5+1620(3+x)4+1188(3+x)3+384(3+x)2+693+x+x)dx+2(log(x)+24log(x)(3+x)3+36log(x)(3+x)2+log(x)x)dx66(1+216(3+x)5+468(3+x)4+240(3+x)3+48(3+x)2+73+x)dx+270(72(3+x)5+132(3+x)4+36(3+x)3+4(3+x)2+13+x)dx294(24(3+x)5+36(3+x)4+43(3+x)219(3+x)+19x)dx=144(3x)4864(3x)3+1872(3x)217123x52x+x2643log(3x)98log(x)3+2log(x)dx+2log(x)xdx+48log(x)(3+x)3dx+72log(x)(3+x)2dx=144(3x)4864(3x)3+1872(3x)217123x54x+x2643log(3x)98log(x)324log(x)(3x)2+2xlog(x)+24xlog(x)3x+log2(x)+2413+xdx+241(3+x)2xdx=144(3x)4864(3x)3+1872(3x)217123x54x+x2+83log(3x)98log(x)324log(x)(3x)2+2xlog(x)+24xlog(x)3x+log2(x)+24(13(3+x)219(3+x)+19x)dx=144(3x)4864(3x)3+1872(3x)217043x54x+x230log(x)24log(x)(3x)2+2xlog(x)+24xlog(x)3x+log2(x)

________________________________________________________________________________________

Mathematica [B]  time = 0.09, size = 66, normalized size = 3.14 31608+31266x7551x21320x3+702x466x5+x6+2(3+x)2(147+135x33x2+x3)log(x)+(3+x)4log2(x)(3+x)4

Antiderivative was successfully verified.

[In]

Integrate[(7938 + 17406*x - 36774*x^2 + 22422*x^3 - 6186*x^4 + 906*x^5 - 82*x^6 + 2*x^7 + (-486 - 1188*x + 192
6*x^2 - 960*x^3 + 222*x^4 - 28*x^5 + 2*x^6)*Log[x])/(-243*x + 405*x^2 - 270*x^3 + 90*x^4 - 15*x^5 + x^6),x]

[Out]

(-31608 + 31266*x - 7551*x^2 - 1320*x^3 + 702*x^4 - 66*x^5 + x^6 + 2*(-3 + x)^2*(-147 + 135*x - 33*x^2 + x^3)*
Log[x] + (-3 + x)^4*Log[x]^2)/(-3 + x)^4

________________________________________________________________________________________

fricas [B]  time = 0.56, size = 99, normalized size = 4.71 x666x5+702x41320x3+(x412x3+54x2108x+81)log(x)27551x2+2(x539x4+342x31254x2+2097x1323)log(x)+31266x31608x412x3+54x2108x+81

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*log(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-3
6774*x^2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x, algorithm="fricas")

[Out]

(x^6 - 66*x^5 + 702*x^4 - 1320*x^3 + (x^4 - 12*x^3 + 54*x^2 - 108*x + 81)*log(x)^2 - 7551*x^2 + 2*(x^5 - 39*x^
4 + 342*x^3 - 1254*x^2 + 2097*x - 1323)*log(x) + 31266*x - 31608)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 2(x741x6+453x53093x4+11211x318387x2+(x614x5+111x4480x3+963x2594x243)log(x)+8703x+3969)x615x5+90x4270x3+405x2243xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*log(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-3
6774*x^2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x, algorithm="giac")

[Out]

integrate(2*(x^7 - 41*x^6 + 453*x^5 - 3093*x^4 + 11211*x^3 - 18387*x^2 + (x^6 - 14*x^5 + 111*x^4 - 480*x^3 + 9
63*x^2 - 594*x - 243)*log(x) + 8703*x + 3969)/(x^6 - 15*x^5 + 90*x^4 - 270*x^3 + 405*x^2 - 243*x), x)

________________________________________________________________________________________

maple [B]  time = 0.10, size = 72, normalized size = 3.43




method result size



default x254x98ln(x)3+144(x3)4+864(x3)3+1872(x3)2+1704x3+2xln(x)+ln(x)2+8ln(x)x(x6)3(x3)224ln(x)xx3 72
norman x6+x4ln(x)22998x3+1116ln(x)+16164x+5051x46822xln(x)284x4ln(x)9+380x3ln(x)366x5+81ln(x)2108xln(x)2+54x2ln(x)212x3ln(x)2+2x5ln(x)405632(x3)4418ln(x)9 104
risch ln(x)2+2(x36x227x+96)ln(x)x26x+9x6+54x4ln(x)+66x5648x3ln(x)702x4+2916x2ln(x)+1320x35832xln(x)+7551x2+4374ln(x)31266x+31608(x26x+9)2 105



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*ln(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-36774*x^
2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x,method=_RETURNVERBOSE)

[Out]

x^2-54*x-98/3*ln(x)+144/(x-3)^4+864/(x-3)^3+1872/(x-3)^2+1704/(x-3)+2*x*ln(x)+ln(x)^2+8/3*ln(x)*x*(x-6)/(x-3)^
2-24*ln(x)*x/(x-3)

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 336, normalized size = 16.00 x252x27(80x3630x2+1692x1539)2(x412x3+54x2108x+81)+369(40x3300x2+780x693)2(x412x3+54x2108x+81)1359(16x3108x2+264x225)2(x412x3+54x2108x+81)+3093(4x318x2+36x27)2(x412x3+54x2108x+81)+49(4x342x2+156x225)2(x412x3+54x2108x+81)11211(2x24x+3)2(x412x3+54x2108x+81)6x33(x26x+9)log(x)236x22(3x350x2+111x)log(x)+78x723(x26x+9)+6129(4x3)2(x412x3+54x2108x+81)87032(x412x3+54x2108x+81)983log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*log(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-3
6774*x^2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x, algorithm="maxima")

[Out]

x^2 - 52*x - 27/2*(80*x^3 - 630*x^2 + 1692*x - 1539)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) + 369/2*(40*x^3 - 30
0*x^2 + 780*x - 693)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) - 1359/2*(16*x^3 - 108*x^2 + 264*x - 225)/(x^4 - 12*
x^3 + 54*x^2 - 108*x + 81) + 3093/2*(4*x^3 - 18*x^2 + 36*x - 27)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) + 49/2*(
4*x^3 - 42*x^2 + 156*x - 225)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) - 11211/2*(2*x^2 - 4*x + 3)/(x^4 - 12*x^3 +
 54*x^2 - 108*x + 81) - 1/3*(6*x^3 - 3*(x^2 - 6*x + 9)*log(x)^2 - 36*x^2 - 2*(3*x^3 - 50*x^2 + 111*x)*log(x) +
 78*x - 72)/(x^2 - 6*x + 9) + 6129/2*(4*x - 3)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) - 8703/2/(x^4 - 12*x^3 + 5
4*x^2 - 108*x + 81) - 98/3*log(x)

________________________________________________________________________________________

mupad [B]  time = 7.12, size = 62, normalized size = 2.95 ln(x)254ln(x)x(1800ln(x)35640)1728ln(x)+x3(72ln(x)1704)x2(624ln(x)13464)+31608(x3)4+x(2ln(x)54)+x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(17406*x - log(x)*(1188*x - 1926*x^2 + 960*x^3 - 222*x^4 + 28*x^5 - 2*x^6 + 486) - 36774*x^2 + 22422*x^3
- 6186*x^4 + 906*x^5 - 82*x^6 + 2*x^7 + 7938)/(243*x - 405*x^2 + 270*x^3 - 90*x^4 + 15*x^5 - x^6),x)

[Out]

log(x)^2 - 54*log(x) - (x*(1800*log(x) - 35640) - 1728*log(x) + x^3*(72*log(x) - 1704) - x^2*(624*log(x) - 134
64) + 31608)/(x - 3)^4 + x*(2*log(x) - 54) + x^2

________________________________________________________________________________________

sympy [B]  time = 0.30, size = 76, normalized size = 3.62 x254x+1704x313464x2+35640x31608x412x3+54x2108x+81+log(x)254log(x)+(2x312x254x+192)log(x)x26x+9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**6-28*x**5+222*x**4-960*x**3+1926*x**2-1188*x-486)*ln(x)+2*x**7-82*x**6+906*x**5-6186*x**4+224
22*x**3-36774*x**2+17406*x+7938)/(x**6-15*x**5+90*x**4-270*x**3+405*x**2-243*x),x)

[Out]

x**2 - 54*x + (1704*x**3 - 13464*x**2 + 35640*x - 31608)/(x**4 - 12*x**3 + 54*x**2 - 108*x + 81) + log(x)**2 -
 54*log(x) + (2*x**3 - 12*x**2 - 54*x + 192)*log(x)/(x**2 - 6*x + 9)

________________________________________________________________________________________