3.95.45
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [B] time = 0.75, antiderivative size = 79, normalized size of antiderivative =
3.76, number of steps used = 21, number of rules used = 12, integrand size = 98, =
0.122, Rules used = {6688, 12, 6742, 1850, 1620, 2357, 2295, 2319, 44, 2314, 31, 2301}
Antiderivative was successfully verified.
[In]
Int[(7938 + 17406*x - 36774*x^2 + 22422*x^3 - 6186*x^4 + 906*x^5 - 82*x^6 + 2*x^7 + (-486 - 1188*x + 1926*x^2
- 960*x^3 + 222*x^4 - 28*x^5 + 2*x^6)*Log[x])/(-243*x + 405*x^2 - 270*x^3 + 90*x^4 - 15*x^5 + x^6),x]
[Out]
144/(3 - x)^4 - 864/(3 - x)^3 + 1872/(3 - x)^2 - 1704/(3 - x) - 54*x + x^2 - 30*Log[x] - (24*Log[x])/(3 - x)^2
+ 2*x*Log[x] + (24*x*Log[x])/(3 - x) + Log[x]^2
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 44
Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])
Rule 1620
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]
Rule 1850
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2301
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]
Rule 2314
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[(x*(d + e*x^r)^(q
+ 1)*(a + b*Log[c*x^n]))/d, x] - Dist[(b*n)/d, Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]
Rule 2319
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[((d + e*x)^(q + 1
)*(a + b*Log[c*x^n])^p)/(e*(q + 1)), x] - Dist[(b*n*p)/(e*(q + 1)), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] && !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))
Rule 2357
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 66, normalized size = 3.14
Antiderivative was successfully verified.
[In]
Integrate[(7938 + 17406*x - 36774*x^2 + 22422*x^3 - 6186*x^4 + 906*x^5 - 82*x^6 + 2*x^7 + (-486 - 1188*x + 192
6*x^2 - 960*x^3 + 222*x^4 - 28*x^5 + 2*x^6)*Log[x])/(-243*x + 405*x^2 - 270*x^3 + 90*x^4 - 15*x^5 + x^6),x]
[Out]
(-31608 + 31266*x - 7551*x^2 - 1320*x^3 + 702*x^4 - 66*x^5 + x^6 + 2*(-3 + x)^2*(-147 + 135*x - 33*x^2 + x^3)*
Log[x] + (-3 + x)^4*Log[x]^2)/(-3 + x)^4
________________________________________________________________________________________
fricas [B] time = 0.56, size = 99, normalized size = 4.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*log(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-3
6774*x^2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x, algorithm="fricas")
[Out]
(x^6 - 66*x^5 + 702*x^4 - 1320*x^3 + (x^4 - 12*x^3 + 54*x^2 - 108*x + 81)*log(x)^2 - 7551*x^2 + 2*(x^5 - 39*x^
4 + 342*x^3 - 1254*x^2 + 2097*x - 1323)*log(x) + 31266*x - 31608)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*log(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-3
6774*x^2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x, algorithm="giac")
[Out]
integrate(2*(x^7 - 41*x^6 + 453*x^5 - 3093*x^4 + 11211*x^3 - 18387*x^2 + (x^6 - 14*x^5 + 111*x^4 - 480*x^3 + 9
63*x^2 - 594*x - 243)*log(x) + 8703*x + 3969)/(x^6 - 15*x^5 + 90*x^4 - 270*x^3 + 405*x^2 - 243*x), x)
________________________________________________________________________________________
maple [B] time = 0.10, size = 72, normalized size = 3.43
|
|
|
method |
result |
size |
|
|
|
default |
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*ln(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-36774*x^
2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x,method=_RETURNVERBOSE)
[Out]
x^2-54*x-98/3*ln(x)+144/(x-3)^4+864/(x-3)^3+1872/(x-3)^2+1704/(x-3)+2*x*ln(x)+ln(x)^2+8/3*ln(x)*x*(x-6)/(x-3)^
2-24*ln(x)*x/(x-3)
________________________________________________________________________________________
maxima [B] time = 0.41, size = 336, normalized size = 16.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^6-28*x^5+222*x^4-960*x^3+1926*x^2-1188*x-486)*log(x)+2*x^7-82*x^6+906*x^5-6186*x^4+22422*x^3-3
6774*x^2+17406*x+7938)/(x^6-15*x^5+90*x^4-270*x^3+405*x^2-243*x),x, algorithm="maxima")
[Out]
x^2 - 52*x - 27/2*(80*x^3 - 630*x^2 + 1692*x - 1539)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) + 369/2*(40*x^3 - 30
0*x^2 + 780*x - 693)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) - 1359/2*(16*x^3 - 108*x^2 + 264*x - 225)/(x^4 - 12*
x^3 + 54*x^2 - 108*x + 81) + 3093/2*(4*x^3 - 18*x^2 + 36*x - 27)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) + 49/2*(
4*x^3 - 42*x^2 + 156*x - 225)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) - 11211/2*(2*x^2 - 4*x + 3)/(x^4 - 12*x^3 +
54*x^2 - 108*x + 81) - 1/3*(6*x^3 - 3*(x^2 - 6*x + 9)*log(x)^2 - 36*x^2 - 2*(3*x^3 - 50*x^2 + 111*x)*log(x) +
78*x - 72)/(x^2 - 6*x + 9) + 6129/2*(4*x - 3)/(x^4 - 12*x^3 + 54*x^2 - 108*x + 81) - 8703/2/(x^4 - 12*x^3 + 5
4*x^2 - 108*x + 81) - 98/3*log(x)
________________________________________________________________________________________
mupad [B] time = 7.12, size = 62, normalized size = 2.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(17406*x - log(x)*(1188*x - 1926*x^2 + 960*x^3 - 222*x^4 + 28*x^5 - 2*x^6 + 486) - 36774*x^2 + 22422*x^3
- 6186*x^4 + 906*x^5 - 82*x^6 + 2*x^7 + 7938)/(243*x - 405*x^2 + 270*x^3 - 90*x^4 + 15*x^5 - x^6),x)
[Out]
log(x)^2 - 54*log(x) - (x*(1800*log(x) - 35640) - 1728*log(x) + x^3*(72*log(x) - 1704) - x^2*(624*log(x) - 134
64) + 31608)/(x - 3)^4 + x*(2*log(x) - 54) + x^2
________________________________________________________________________________________
sympy [B] time = 0.30, size = 76, normalized size = 3.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**6-28*x**5+222*x**4-960*x**3+1926*x**2-1188*x-486)*ln(x)+2*x**7-82*x**6+906*x**5-6186*x**4+224
22*x**3-36774*x**2+17406*x+7938)/(x**6-15*x**5+90*x**4-270*x**3+405*x**2-243*x),x)
[Out]
x**2 - 54*x + (1704*x**3 - 13464*x**2 + 35640*x - 31608)/(x**4 - 12*x**3 + 54*x**2 - 108*x + 81) + log(x)**2 -
54*log(x) + (2*x**3 - 12*x**2 - 54*x + 192)*log(x)/(x**2 - 6*x + 9)
________________________________________________________________________________________