Optimal. Leaf size=13 \[ \frac {-1-e^x}{4+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 18, normalized size of antiderivative = 1.38, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {27, 6742, 2197} \begin {gather*} -\frac {e^x}{x+4}-\frac {1}{x+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2197
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+e^x (-3-x)}{(4+x)^2} \, dx\\ &=\int \left (\frac {1}{(4+x)^2}-\frac {e^x (3+x)}{(4+x)^2}\right ) \, dx\\ &=-\frac {1}{4+x}-\int \frac {e^x (3+x)}{(4+x)^2} \, dx\\ &=-\frac {1}{4+x}-\frac {e^x}{4+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 12, normalized size = 0.92 \begin {gather*} -\frac {1+e^x}{4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 11, normalized size = 0.85 \begin {gather*} -\frac {e^{x} + 1}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 11, normalized size = 0.85 \begin {gather*} -\frac {e^{x} + 1}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 13, normalized size = 1.00
method | result | size |
norman | \(\frac {-{\mathrm e}^{x}-1}{4+x}\) | \(13\) |
default | \(-\frac {1}{4+x}-\frac {{\mathrm e}^{x}}{4+x}\) | \(18\) |
risch | \(-\frac {1}{4+x}-\frac {{\mathrm e}^{x}}{4+x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {x e^{x}}{x^{2} + 8 \, x + 16} + \frac {3 \, e^{\left (-4\right )} E_{2}\left (-x - 4\right )}{x + 4} - \frac {1}{x + 4} - \int \frac {{\left (x - 4\right )} e^{x}}{x^{3} + 12 \, x^{2} + 48 \, x + 64}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.04, size = 11, normalized size = 0.85 \begin {gather*} -\frac {{\mathrm {e}}^x+1}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.92 \begin {gather*} - \frac {e^{x}}{x + 4} - \frac {1}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________