Optimal. Leaf size=31 \[ e^x+\log \left (\log \left (1-12 \left (-5-e^5+\frac {e^x}{\log \left (\frac {2}{x}\right )}\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 10.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 e^{2 x}+\left (e^x \left (-120-24 e^5\right )+24 e^{2 x} x\right ) \log \left (\frac {2}{x}\right )+e^x \left (-120 x-24 e^5 x\right ) \log ^2\left (\frac {2}{x}\right )+\left (12 e^{3 x} x \log \left (\frac {2}{x}\right )+e^{2 x} \left (-120 x-24 e^5 x\right ) \log ^2\left (\frac {2}{x}\right )+e^x \left (299 x+120 e^5 x+12 e^{10} x\right ) \log ^3\left (\frac {2}{x}\right )\right ) \log \left (\frac {-12 e^{2 x}+e^x \left (120+24 e^5\right ) \log \left (\frac {2}{x}\right )+\left (-299-120 e^5-12 e^{10}\right ) \log ^2\left (\frac {2}{x}\right )}{\log ^2\left (\frac {2}{x}\right )}\right )}{\left (12 e^{2 x} x \log \left (\frac {2}{x}\right )+e^x \left (-120 x-24 e^5 x\right ) \log ^2\left (\frac {2}{x}\right )+\left (299 x+120 e^5 x+12 e^{10} x\right ) \log ^3\left (\frac {2}{x}\right )\right ) \log \left (\frac {-12 e^{2 x}+e^x \left (120+24 e^5\right ) \log \left (\frac {2}{x}\right )+\left (-299-120 e^5-12 e^{10}\right ) \log ^2\left (\frac {2}{x}\right )}{\log ^2\left (\frac {2}{x}\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {2 \left (1+x \log \left (\frac {2}{x}\right )\right )}{x \log \left (\frac {2}{x}\right ) \log \left (-299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right )-\frac {12 e^{2 x}}{\log ^2\left (\frac {2}{x}\right )}+\frac {24 e^x \left (5+e^5\right )}{\log \left (\frac {2}{x}\right )}\right )}+\frac {2 \left (60 e^x \left (1+\frac {e^5}{5}\right )-299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right ) \log \left (\frac {2}{x}\right )\right ) \left (1+x \log \left (\frac {2}{x}\right )\right )}{x \left (12 e^{2 x}-120 e^x \left (1+\frac {e^5}{5}\right ) \log \left (\frac {2}{x}\right )+299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right ) \log ^2\left (\frac {2}{x}\right )\right ) \log \left (-299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right )-\frac {12 e^{2 x}}{\log ^2\left (\frac {2}{x}\right )}+\frac {24 e^x \left (5+e^5\right )}{\log \left (\frac {2}{x}\right )}\right )}\right ) \, dx\\ &=2 \int \frac {1+x \log \left (\frac {2}{x}\right )}{x \log \left (\frac {2}{x}\right ) \log \left (-299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right )-\frac {12 e^{2 x}}{\log ^2\left (\frac {2}{x}\right )}+\frac {24 e^x \left (5+e^5\right )}{\log \left (\frac {2}{x}\right )}\right )} \, dx+2 \int \frac {\left (60 e^x \left (1+\frac {e^5}{5}\right )-299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right ) \log \left (\frac {2}{x}\right )\right ) \left (1+x \log \left (\frac {2}{x}\right )\right )}{x \left (12 e^{2 x}-120 e^x \left (1+\frac {e^5}{5}\right ) \log \left (\frac {2}{x}\right )+299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right ) \log ^2\left (\frac {2}{x}\right )\right ) \log \left (-299 \left (1+\frac {12}{299} e^5 \left (10+e^5\right )\right )-\frac {12 e^{2 x}}{\log ^2\left (\frac {2}{x}\right )}+\frac {24 e^x \left (5+e^5\right )}{\log \left (\frac {2}{x}\right )}\right )} \, dx+\int e^x \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 51, normalized size = 1.65 \begin {gather*} e^x+\log \left (\log \left (-299-120 e^5-12 e^{10}-\frac {12 e^{2 x}}{\log ^2\left (\frac {2}{x}\right )}+\frac {24 e^x \left (5+e^5\right )}{\log \left (\frac {2}{x}\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 55, normalized size = 1.77 \begin {gather*} e^{x} + \log \left (\log \left (\frac {24 \, {\left (e^{5} + 5\right )} e^{x} \log \left (\frac {2}{x}\right ) - {\left (12 \, e^{10} + 120 \, e^{5} + 299\right )} \log \left (\frac {2}{x}\right )^{2} - 12 \, e^{\left (2 \, x\right )}}{\log \left (\frac {2}{x}\right )^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 36.17, size = 1090, normalized size = 35.16
method | result | size |
risch | \({\mathrm e}^{x}+\ln \left (\ln \left (-40 \,{\mathrm e}^{5} \ln \relax (x )^{2}-40 \,{\mathrm e}^{5} \ln \relax (2)^{2}+80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )-\frac {299 \ln \relax (2)^{2}}{3}-\frac {299 \ln \relax (x )^{2}}{3}-4 \,{\mathrm e}^{2 x}+40 \,{\mathrm e}^{x} \ln \relax (2)+\frac {598 \ln \relax (2) \ln \relax (x )}{3}-40 \,{\mathrm e}^{x} \ln \relax (x )+8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )-4 \,{\mathrm e}^{10} \ln \relax (x )^{2}-4 \,{\mathrm e}^{10} \ln \relax (2)^{2}+8 \ln \relax (2) {\mathrm e}^{5+x}-8 \ln \relax (x ) {\mathrm e}^{5+x}\right )+\frac {i \left (-2 \pi \mathrm {csgn}\left (\frac {i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right ) \mathrm {csgn}\left (i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (i \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left (40 \,{\mathrm e}^{5} \ln \relax (x )^{2}+40 \,{\mathrm e}^{5} \ln \relax (2)^{2}-80 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )+\frac {299 \ln \relax (2)^{2}}{3}+\frac {299 \ln \relax (x )^{2}}{3}+4 \,{\mathrm e}^{2 x}-40 \,{\mathrm e}^{x} \ln \relax (2)-\frac {598 \ln \relax (2) \ln \relax (x )}{3}+40 \,{\mathrm e}^{x} \ln \relax (x )-8 \,{\mathrm e}^{10} \ln \relax (2) \ln \relax (x )+4 \,{\mathrm e}^{10} \ln \relax (x )^{2}+4 \,{\mathrm e}^{10} \ln \relax (2)^{2}-8 \ln \relax (2) {\mathrm e}^{5+x}+8 \ln \relax (x ) {\mathrm e}^{5+x}\right )}{\left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )^{2}}\right )^{3}-4 i \ln \relax (2)-2 i \ln \relax (3)+4 i \ln \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )+2 \pi \right )}{2}\right )\) | \(1090\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 92, normalized size = 2.97 \begin {gather*} e^{x} + \log \left (\log \left (24 \, {\left (e^{5} + 5\right )} e^{x} \log \relax (2) - {\left (12 \, e^{10} + 120 \, e^{5} + 299\right )} \log \relax (2)^{2} - {\left (12 \, e^{10} + 120 \, e^{5} + 299\right )} \log \relax (x)^{2} - 2 \, {\left (12 \, {\left (e^{5} + 5\right )} e^{x} - {\left (12 \, e^{10} + 120 \, e^{5} + 299\right )} \log \relax (2)\right )} \log \relax (x) - 12 \, e^{\left (2 \, x\right )}\right ) - 2 \, \log \left (-\log \relax (2) + \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.18, size = 57, normalized size = 1.84 \begin {gather*} \ln \left (\ln \left (-\frac {\left (120\,{\mathrm {e}}^5+12\,{\mathrm {e}}^{10}+299\right )\,{\ln \left (\frac {2}{x}\right )}^2-{\mathrm {e}}^x\,\left (24\,{\mathrm {e}}^5+120\right )\,\ln \left (\frac {2}{x}\right )+12\,{\mathrm {e}}^{2\,x}}{{\ln \left (\frac {2}{x}\right )}^2}\right )\right )+{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.78, size = 54, normalized size = 1.74 \begin {gather*} e^{x} + \log {\left (\log {\left (\frac {- 12 e^{2 x} + \left (120 + 24 e^{5}\right ) e^{x} \log {\left (\frac {2}{x} \right )} + \left (- 12 e^{10} - 120 e^{5} - 299\right ) \log {\left (\frac {2}{x} \right )}^{2}}{\log {\left (\frac {2}{x} \right )}^{2}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________