Optimal. Leaf size=27 \[ \frac {25}{\left (-\log (3)+2 x \left (-e^x+\frac {e^{48} x}{\log (x)}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 7.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-100 e^{48} x \log (x)+200 e^{48} x \log ^2(x)+e^x (-100-100 x) \log ^3(x)}{-8 e^{144} x^6+\left (24 e^{96+x} x^5+12 e^{96} x^4 \log (3)\right ) \log (x)+\left (-24 e^{48+2 x} x^4-24 e^{48+x} x^3 \log (3)-6 e^{48} x^2 \log ^2(3)\right ) \log ^2(x)+\left (8 e^{3 x} x^3+12 e^{2 x} x^2 \log (3)+6 e^x x \log ^2(3)+\log ^3(3)\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100 \log (x) \left (e^{48} x-2 e^{48} x \log (x)+e^x (1+x) \log ^2(x)\right )}{\left (2 e^{48} x^2-\left (2 e^x x+\log (3)\right ) \log (x)\right )^3} \, dx\\ &=100 \int \frac {\log (x) \left (e^{48} x-2 e^{48} x \log (x)+e^x (1+x) \log ^2(x)\right )}{\left (2 e^{48} x^2-\left (2 e^x x+\log (3)\right ) \log (x)\right )^3} \, dx\\ &=100 \int \left (-\frac {(1+x) \log ^2(x)}{2 x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^2}+\frac {\log (x) \left (2 e^{48} x^2-2 e^{48} x^2 \log (x)+2 e^{48} x^3 \log (x)-\log (3) \log ^2(x)-x \log (3) \log ^2(x)\right )}{2 x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3}\right ) \, dx\\ &=-\left (50 \int \frac {(1+x) \log ^2(x)}{x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^2} \, dx\right )+50 \int \frac {\log (x) \left (2 e^{48} x^2-2 e^{48} x^2 \log (x)+2 e^{48} x^3 \log (x)-\log (3) \log ^2(x)-x \log (3) \log ^2(x)\right )}{x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3} \, dx\\ &=50 \int \left (\frac {2 e^{48} x \log (x)}{\left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3}-\frac {2 e^{48} x \log ^2(x)}{\left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3}+\frac {2 e^{48} x^2 \log ^2(x)}{\left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3}-\frac {\log (3) \log ^3(x)}{x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3}+\frac {\log (3) \log ^3(x)}{\left (-2 e^{48} x^2+2 e^x x \log (x)+\log (3) \log (x)\right )^3}\right ) \, dx-50 \int \left (\frac {\log ^2(x)}{x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^2}+\frac {\log ^2(x)}{\left (-2 e^{48} x^2+2 e^x x \log (x)+\log (3) \log (x)\right )^2}\right ) \, dx\\ &=-\left (50 \int \frac {\log ^2(x)}{x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^2} \, dx\right )-50 \int \frac {\log ^2(x)}{\left (-2 e^{48} x^2+2 e^x x \log (x)+\log (3) \log (x)\right )^2} \, dx+\left (100 e^{48}\right ) \int \frac {x \log (x)}{\left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3} \, dx-\left (100 e^{48}\right ) \int \frac {x \log ^2(x)}{\left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3} \, dx+\left (100 e^{48}\right ) \int \frac {x^2 \log ^2(x)}{\left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3} \, dx-(50 \log (3)) \int \frac {\log ^3(x)}{x \left (2 e^{48} x^2-2 e^x x \log (x)-\log (3) \log (x)\right )^3} \, dx+(50 \log (3)) \int \frac {\log ^3(x)}{\left (-2 e^{48} x^2+2 e^x x \log (x)+\log (3) \log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.62, size = 29, normalized size = 1.07 \begin {gather*} \frac {25 \log ^2(x)}{\left (-2 e^{48} x^2+\left (2 e^x x+\log (3)\right ) \log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 73, normalized size = 2.70 \begin {gather*} \frac {25 \, e^{192} \log \relax (x)^{2}}{4 \, x^{4} e^{288} + {\left (4 \, x^{2} e^{\left (2 \, x + 192\right )} + 4 \, x e^{\left (x + 192\right )} \log \relax (3) + e^{192} \log \relax (3)^{2}\right )} \log \relax (x)^{2} - 4 \, {\left (2 \, x^{3} e^{\left (x + 240\right )} + x^{2} e^{240} \log \relax (3)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 80.35, size = 71, normalized size = 2.63 \begin {gather*} \frac {25 \, \log \relax (x)^{2}}{4 \, x^{4} e^{96} - 8 \, x^{3} e^{\left (x + 48\right )} \log \relax (x) - 4 \, x^{2} e^{48} \log \relax (3) \log \relax (x) + 4 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} + 4 \, x e^{x} \log \relax (3) \log \relax (x)^{2} + \log \relax (3)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 86, normalized size = 3.19
method | result | size |
risch | \(\frac {25}{\left (2 \,{\mathrm e}^{x} x +\ln \relax (3)\right )^{2}}+\frac {100 \left (-{\mathrm e}^{48} x^{2}+2 x \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (3) \ln \relax (x )\right ) {\mathrm e}^{48} x^{2}}{\left (4 \,{\mathrm e}^{2 x} x^{2}+4 x \ln \relax (3) {\mathrm e}^{x}+\ln \relax (3)^{2}\right ) \left (2 x \,{\mathrm e}^{x} \ln \relax (x )-2 \,{\mathrm e}^{48} x^{2}+\ln \relax (3) \ln \relax (x )\right )^{2}}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 72, normalized size = 2.67 \begin {gather*} \frac {25 \, \log \relax (x)^{2}}{4 \, x^{4} e^{96} - 4 \, x^{2} e^{48} \log \relax (3) \log \relax (x) + 4 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} + \log \relax (3)^{2} \log \relax (x)^{2} - 4 \, {\left (2 \, x^{3} e^{48} \log \relax (x) - x \log \relax (3) \log \relax (x)^{2}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (100\,x+100\right )\,{\ln \relax (x)}^3-200\,x\,{\mathrm {e}}^{48}\,{\ln \relax (x)}^2+100\,x\,{\mathrm {e}}^{48}\,\ln \relax (x)}{\ln \relax (x)\,\left (12\,x^4\,{\mathrm {e}}^{96}\,\ln \relax (3)+24\,x^5\,{\mathrm {e}}^{96}\,{\mathrm {e}}^x\right )-{\ln \relax (x)}^2\,\left (6\,x^2\,{\mathrm {e}}^{48}\,{\ln \relax (3)}^2+24\,x^4\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{48}+24\,x^3\,{\mathrm {e}}^{48}\,{\mathrm {e}}^x\,\ln \relax (3)\right )-8\,x^6\,{\mathrm {e}}^{144}+{\ln \relax (x)}^3\,\left (8\,x^3\,{\mathrm {e}}^{3\,x}+{\ln \relax (3)}^3+6\,x\,{\mathrm {e}}^x\,{\ln \relax (3)}^2+12\,x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (3)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 82, normalized size = 3.04 \begin {gather*} \frac {25 \log {\relax (x )}^{2}}{4 x^{4} e^{96} + 4 x^{2} e^{2 x} \log {\relax (x )}^{2} - 4 x^{2} e^{48} \log {\relax (3 )} \log {\relax (x )} + \left (- 8 x^{3} e^{48} \log {\relax (x )} + 4 x \log {\relax (3 )} \log {\relax (x )}^{2}\right ) e^{x} + \log {\relax (3 )}^{2} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________