Optimal. Leaf size=30 \[ \frac {5 e^{-x \left (1+x \left (-e^{x^2}-\frac {3}{x}+4 x\right )\right )}}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 70, normalized size of antiderivative = 2.33, number of steps used = 1, number of rules used = 1, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {2288} \begin {gather*} \frac {5 e^{-4 x^3+e^{x^2} x^2+2 x} \left (-6 x^3+e^{x^2} \left (x^4+x^2\right )+x\right )}{x^2 \left (-6 x^2+e^{x^2} x+e^{x^2} x^3+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {5 e^{2 x+e^{x^2} x^2-4 x^3} \left (x-6 x^3+e^{x^2} \left (x^2+x^4\right )\right )}{x^2 \left (1+e^{x^2} x-6 x^2+e^{x^2} x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 23, normalized size = 0.77 \begin {gather*} \frac {5 e^{x \left (2+e^{x^2} x-4 x^2\right )}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 23, normalized size = 0.77 \begin {gather*} \frac {5 \, e^{\left (-4 \, x^{3} + x^{2} e^{\left (x^{2}\right )} + 2 \, x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left (12 \, x^{3} - 2 \, {\left (x^{4} + x^{2}\right )} e^{\left (x^{2}\right )} - 2 \, x + 1\right )} e^{\left (-4 \, x^{3} + x^{2} e^{\left (x^{2}\right )} + 2 \, x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 0.80
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{-x \left (-{\mathrm e}^{x^{2}} x +4 x^{2}-2\right )}}{x}\) | \(24\) |
norman | \(\frac {5 \,{\mathrm e}^{x^{2} {\mathrm e}^{x^{2}}-4 x^{3}+2 x}}{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 23, normalized size = 0.77 \begin {gather*} \frac {5 \, e^{\left (-4 \, x^{3} + x^{2} e^{\left (x^{2}\right )} + 2 \, x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.34, size = 24, normalized size = 0.80 \begin {gather*} \frac {5\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-4\,x^3}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{x^2}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 20, normalized size = 0.67 \begin {gather*} \frac {5 e^{- 4 x^{3} + x^{2} e^{x^{2}} + 2 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________