Optimal. Leaf size=35 \[ \frac {5}{\frac {2 x}{3}-\frac {5}{3} \left (4+\log \left (\frac {x^2}{x-\frac {1}{x^2 (2+x)^2}}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-600-390 x+30 x^2+600 x^3+660 x^4+90 x^5-105 x^6-30 x^7}{-800 x-240 x^2+72 x^3+3196 x^4+4160 x^5+1472 x^6-32 x^7-56 x^8+4 x^9+\left (-400 x-160 x^2+20 x^3+1600 x^4+2240 x^5+960 x^6+80 x^7-20 x^8\right ) \log \left (\frac {4 x^4+4 x^5+x^6}{-1+4 x^3+4 x^4+x^5}\right )+\left (-50 x-25 x^2+200 x^4+300 x^5+150 x^6+25 x^7\right ) \log ^2\left (\frac {4 x^4+4 x^5+x^6}{-1+4 x^3+4 x^4+x^5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 \left (40+26 x-2 x^2-40 x^3-44 x^4-6 x^5+7 x^6+2 x^7\right )}{x \left (2+x-8 x^3-12 x^4-6 x^5-x^6\right ) \left (20-2 x+5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\\ &=15 \int \frac {40+26 x-2 x^2-40 x^3-44 x^4-6 x^5+7 x^6+2 x^7}{x \left (2+x-8 x^3-12 x^4-6 x^5-x^6\right ) \left (20-2 x+5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\\ &=15 \int \left (-\frac {2}{\left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}+\frac {20}{x \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}+\frac {10}{(2+x) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}-\frac {5 x^2 \left (12+16 x+5 x^2\right )}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}\right ) \, dx\\ &=-\left (30 \int \frac {1}{\left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\right )-75 \int \frac {x^2 \left (12+16 x+5 x^2\right )}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx+150 \int \frac {1}{(2+x) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx+300 \int \frac {1}{x \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\\ &=-\left (30 \int \frac {1}{\left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\right )-75 \int \left (\frac {12 x^2}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}+\frac {16 x^3}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}+\frac {5 x^4}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2}\right ) \, dx+150 \int \frac {1}{(2+x) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx+300 \int \frac {1}{x \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\\ &=-\left (30 \int \frac {1}{\left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\right )+150 \int \frac {1}{(2+x) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx+300 \int \frac {1}{x \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx-375 \int \frac {x^4}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx-900 \int \frac {x^2}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx-1200 \int \frac {x^3}{\left (-1+4 x^3+4 x^4+x^5\right ) \left (-20+2 x-5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 38, normalized size = 1.09 \begin {gather*} -\frac {15}{20-2 x+5 \log \left (\frac {x^4 (2+x)^2}{-1+4 x^3+4 x^4+x^5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 44, normalized size = 1.26 \begin {gather*} \frac {15}{2 \, x - 5 \, \log \left (\frac {x^{6} + 4 \, x^{5} + 4 \, x^{4}}{x^{5} + 4 \, x^{4} + 4 \, x^{3} - 1}\right ) - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 44, normalized size = 1.26 \begin {gather*} \frac {15}{2 \, x - 5 \, \log \left (\frac {x^{6} + 4 \, x^{5} + 4 \, x^{4}}{x^{5} + 4 \, x^{4} + 4 \, x^{3} - 1}\right ) - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 45, normalized size = 1.29
method | result | size |
risch | \(\frac {15}{-20+2 x -5 \ln \left (\frac {x^{6}+4 x^{5}+4 x^{4}}{x^{5}+4 x^{4}+4 x^{3}-1}\right )}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 37, normalized size = 1.06 \begin {gather*} \frac {15}{2 \, x + 5 \, \log \left (x^{5} + 4 \, x^{4} + 4 \, x^{3} - 1\right ) - 10 \, \log \left (x + 2\right ) - 20 \, \log \relax (x) - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {30\,x^7+105\,x^6-90\,x^5-660\,x^4-600\,x^3-30\,x^2+390\,x+600}{{\ln \left (\frac {x^6+4\,x^5+4\,x^4}{x^5+4\,x^4+4\,x^3-1}\right )}^2\,\left (25\,x^7+150\,x^6+300\,x^5+200\,x^4-25\,x^2-50\,x\right )-800\,x+\ln \left (\frac {x^6+4\,x^5+4\,x^4}{x^5+4\,x^4+4\,x^3-1}\right )\,\left (-20\,x^8+80\,x^7+960\,x^6+2240\,x^5+1600\,x^4+20\,x^3-160\,x^2-400\,x\right )-240\,x^2+72\,x^3+3196\,x^4+4160\,x^5+1472\,x^6-32\,x^7-56\,x^8+4\,x^9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 39, normalized size = 1.11 \begin {gather*} - \frac {3}{- \frac {2 x}{5} + \log {\left (\frac {x^{6} + 4 x^{5} + 4 x^{4}}{x^{5} + 4 x^{4} + 4 x^{3} - 1} \right )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________