Optimal. Leaf size=15 \[ \left (x+\frac {(1+x) \log (x)}{e^{5/4}}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 179, normalized size of antiderivative = 11.93, number of steps used = 14, number of rules used = 9, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.117, Rules used = {12, 14, 2357, 2295, 2301, 2304, 2330, 2296, 2305} \begin {gather*} -\frac {\left (1+2 e^{5/4}\right ) x^2}{2 e^{5/2}}+\frac {x^2}{2 e^{5/2}}+\frac {x^2 \log ^2(x)}{e^{5/2}}+\frac {\left (1+2 e^{5/4}\right ) x^2 \log (x)}{e^{5/2}}-\frac {x^2 \log (x)}{e^{5/2}}-\frac {2 \left (2+e^{5/4}\right ) x}{e^{5/2}}+\frac {4 x}{e^{5/2}}+\frac {\left (\left (1+e^{5/4}\right ) x+1\right )^2}{e^{5/4} \left (1+e^{5/4}\right )}+\frac {2 x \log ^2(x)}{e^{5/2}}+\frac {\log ^2(x)}{e^{5/2}}+\frac {2 \left (2+e^{5/4}\right ) x \log (x)}{e^{5/2}}-\frac {4 x \log (x)}{e^{5/2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rule 2296
Rule 2301
Rule 2304
Rule 2305
Rule 2330
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2 e^{5/2} x^2+e^{5/4} \left (2 x+2 x^2\right )+\left (2+4 x+2 x^2+e^{5/4} \left (2 x+4 x^2\right )\right ) \log (x)+\left (2 x+2 x^2\right ) \log ^2(x)}{x} \, dx}{e^{5/2}}\\ &=\frac {\int \left (2 e^{5/4} \left (1+\left (1+e^{5/4}\right ) x\right )+\frac {2 \left (1+\left (2+e^{5/4}\right ) x+\left (1+2 e^{5/4}\right ) x^2\right ) \log (x)}{x}+2 (1+x) \log ^2(x)\right ) \, dx}{e^{5/2}}\\ &=\frac {\left (1+\left (1+e^{5/4}\right ) x\right )^2}{e^{5/4} \left (1+e^{5/4}\right )}+\frac {2 \int \frac {\left (1+\left (2+e^{5/4}\right ) x+\left (1+2 e^{5/4}\right ) x^2\right ) \log (x)}{x} \, dx}{e^{5/2}}+\frac {2 \int (1+x) \log ^2(x) \, dx}{e^{5/2}}\\ &=\frac {\left (1+\left (1+e^{5/4}\right ) x\right )^2}{e^{5/4} \left (1+e^{5/4}\right )}+\frac {2 \int \left (\left (2+e^{5/4}\right ) \log (x)+\frac {\log (x)}{x}+\left (1+2 e^{5/4}\right ) x \log (x)\right ) \, dx}{e^{5/2}}+\frac {2 \int \left (\log ^2(x)+x \log ^2(x)\right ) \, dx}{e^{5/2}}\\ &=\frac {\left (1+\left (1+e^{5/4}\right ) x\right )^2}{e^{5/4} \left (1+e^{5/4}\right )}+\frac {2 \int \frac {\log (x)}{x} \, dx}{e^{5/2}}+\frac {2 \int \log ^2(x) \, dx}{e^{5/2}}+\frac {2 \int x \log ^2(x) \, dx}{e^{5/2}}+\frac {\left (2 \left (2+e^{5/4}\right )\right ) \int \log (x) \, dx}{e^{5/2}}+\frac {\left (2 \left (1+2 e^{5/4}\right )\right ) \int x \log (x) \, dx}{e^{5/2}}\\ &=-\frac {2 \left (2+e^{5/4}\right ) x}{e^{5/2}}-\frac {\left (1+2 e^{5/4}\right ) x^2}{2 e^{5/2}}+\frac {\left (1+\left (1+e^{5/4}\right ) x\right )^2}{e^{5/4} \left (1+e^{5/4}\right )}+\frac {2 \left (2+e^{5/4}\right ) x \log (x)}{e^{5/2}}+\frac {\left (1+2 e^{5/4}\right ) x^2 \log (x)}{e^{5/2}}+\frac {\log ^2(x)}{e^{5/2}}+\frac {2 x \log ^2(x)}{e^{5/2}}+\frac {x^2 \log ^2(x)}{e^{5/2}}-\frac {2 \int x \log (x) \, dx}{e^{5/2}}-\frac {4 \int \log (x) \, dx}{e^{5/2}}\\ &=\frac {4 x}{e^{5/2}}-\frac {2 \left (2+e^{5/4}\right ) x}{e^{5/2}}+\frac {x^2}{2 e^{5/2}}-\frac {\left (1+2 e^{5/4}\right ) x^2}{2 e^{5/2}}+\frac {\left (1+\left (1+e^{5/4}\right ) x\right )^2}{e^{5/4} \left (1+e^{5/4}\right )}-\frac {4 x \log (x)}{e^{5/2}}+\frac {2 \left (2+e^{5/4}\right ) x \log (x)}{e^{5/2}}-\frac {x^2 \log (x)}{e^{5/2}}+\frac {\left (1+2 e^{5/4}\right ) x^2 \log (x)}{e^{5/2}}+\frac {\log ^2(x)}{e^{5/2}}+\frac {2 x \log ^2(x)}{e^{5/2}}+\frac {x^2 \log ^2(x)}{e^{5/2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 22, normalized size = 1.47 \begin {gather*} \frac {\left (e^{5/4} x+(1+x) \log (x)\right )^2}{e^{5/2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.00, size = 34, normalized size = 2.27 \begin {gather*} {\left (x^{2} e^{\frac {5}{2}} + 2 \, {\left (x^{2} + x\right )} e^{\frac {5}{4}} \log \relax (x) + {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2}\right )} e^{\left (-\frac {5}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 45, normalized size = 3.00 \begin {gather*} {\left (2 \, x^{2} e^{\frac {5}{4}} \log \relax (x) + x^{2} \log \relax (x)^{2} + x^{2} e^{\frac {5}{2}} + 2 \, x e^{\frac {5}{4}} \log \relax (x) + 2 \, x \log \relax (x)^{2} + \log \relax (x)^{2}\right )} e^{\left (-\frac {5}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 38, normalized size = 2.53
method | result | size |
risch | \({\mathrm e}^{-\frac {5}{2}} \left (x^{2}+2 x +1\right ) \ln \relax (x )^{2}+{\mathrm e}^{-\frac {5}{2}} \left (2 \,{\mathrm e}^{\frac {5}{4}} x^{2}+2 x \,{\mathrm e}^{\frac {5}{4}}\right ) \ln \relax (x )+x^{2}\) | \(38\) |
norman | \(\left ({\mathrm e}^{-\frac {5}{4}} \ln \relax (x )^{2}+{\mathrm e}^{\frac {5}{4}} x^{2}+{\mathrm e}^{-\frac {5}{4}} x^{2} \ln \relax (x )^{2}+2 x \ln \relax (x )+2 x^{2} \ln \relax (x )+2 \,{\mathrm e}^{-\frac {5}{4}} x \ln \relax (x )^{2}\right ) {\mathrm e}^{-\frac {5}{4}}\) | \(57\) |
default | \({\mathrm e}^{-\frac {5}{2}} \left (x^{2} \ln \relax (x )^{2}+4 \,{\mathrm e}^{\frac {5}{4}} \left (\frac {x^{2} \ln \relax (x )}{2}-\frac {x^{2}}{4}\right )+x^{2} {\mathrm e}^{\frac {5}{2}}+2 x \ln \relax (x )^{2}+2 \,{\mathrm e}^{\frac {5}{4}} \left (x \ln \relax (x )-x \right )+{\mathrm e}^{\frac {5}{4}} x^{2}+2 x \,{\mathrm e}^{\frac {5}{4}}+\ln \relax (x )^{2}\right )\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 108, normalized size = 7.20 \begin {gather*} \frac {1}{2} \, {\left ({\left (2 \, \log \relax (x)^{2} - 2 \, \log \relax (x) + 1\right )} x^{2} + 2 \, x^{2} e^{\frac {5}{2}} + 2 \, x^{2} e^{\frac {5}{4}} + 2 \, x^{2} \log \relax (x) + 4 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x - x^{2} + 2 \, {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} e^{\frac {5}{4}} + 4 \, {\left (x \log \relax (x) - x\right )} e^{\frac {5}{4}} + 4 \, x e^{\frac {5}{4}} + 8 \, x \log \relax (x) + 2 \, \log \relax (x)^{2} - 8 \, x\right )} e^{\left (-\frac {5}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.85, size = 16, normalized size = 1.07 \begin {gather*} {\mathrm {e}}^{-\frac {5}{2}}\,{\left (\ln \relax (x)+x\,{\mathrm {e}}^{5/4}+x\,\ln \relax (x)\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 37, normalized size = 2.47 \begin {gather*} x^{2} + \frac {\left (2 x^{2} + 2 x\right ) \log {\relax (x )}}{e^{\frac {5}{4}}} + \frac {\left (x^{2} + 2 x + 1\right ) \log {\relax (x )}^{2}}{e^{\frac {5}{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________