Optimal. Leaf size=25 \[ \frac {\log \left (\log \left (7-e^{-\frac {1}{x}+\frac {6+x}{9}}\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 4.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-9+6 x+x^2}{9 x}} \left (9+x^2\right )+\left (63 x-9 e^{\frac {-9+6 x+x^2}{9 x}} x\right ) \log \left (7-e^{\frac {-9+6 x+x^2}{9 x}}\right ) \log \left (\log \left (7-e^{\frac {-9+6 x+x^2}{9 x}}\right )\right )}{\left (-63 x^3+9 e^{\frac {-9+6 x+x^2}{9 x}} x^3\right ) \log \left (7-e^{\frac {-9+6 x+x^2}{9 x}}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{\frac {2}{3}+\frac {x}{9}} \left (9+x^2\right )}{9 \left (-7 e^{\frac {1}{x}}+e^{\frac {6+x}{9}}\right ) x^3 \log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )}-\frac {\log \left (\log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )\right )}{x^2}\right ) \, dx\\ &=\frac {1}{9} \int \frac {e^{\frac {2}{3}+\frac {x}{9}} \left (9+x^2\right )}{\left (-7 e^{\frac {1}{x}}+e^{\frac {6+x}{9}}\right ) x^3 \log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )} \, dx-\int \frac {\log \left (\log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )\right )}{x^2} \, dx\\ &=\frac {1}{9} \int \left (\frac {9 e^{\frac {2}{3}+\frac {x}{9}}}{\left (e^{\frac {2}{3}+\frac {x}{9}}-7 e^{\frac {1}{x}}\right ) x^3 \log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )}+\frac {e^{\frac {2}{3}+\frac {x}{9}}}{\left (e^{\frac {2}{3}+\frac {x}{9}}-7 e^{\frac {1}{x}}\right ) x \log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )}\right ) \, dx-\int \frac {\log \left (\log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )\right )}{x^2} \, dx\\ &=\frac {1}{9} \int \frac {e^{\frac {2}{3}+\frac {x}{9}}}{\left (e^{\frac {2}{3}+\frac {x}{9}}-7 e^{\frac {1}{x}}\right ) x \log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )} \, dx+\int \frac {e^{\frac {2}{3}+\frac {x}{9}}}{\left (e^{\frac {2}{3}+\frac {x}{9}}-7 e^{\frac {1}{x}}\right ) x^3 \log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )} \, dx-\int \frac {\log \left (\log \left (7-e^{\frac {1}{9} \left (6-\frac {9}{x}+x\right )}\right )\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.84, size = 26, normalized size = 1.04 \begin {gather*} \frac {\log \left (\log \left (7-e^{\frac {2}{3}-\frac {1}{x}+\frac {x}{9}}\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 24, normalized size = 0.96 \begin {gather*} \frac {\log \left (\log \left (-e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )} + 7\right )\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {9 \, {\left (x e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )} - 7 \, x\right )} \log \left (-e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )} + 7\right ) \log \left (\log \left (-e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )} + 7\right )\right ) - {\left (x^{2} + 9\right )} e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )}}{9 \, {\left (x^{3} e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )} - 7 \, x^{3}\right )} \log \left (-e^{\left (\frac {x^{2} + 6 \, x - 9}{9 \, x}\right )} + 7\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.00
method | result | size |
risch | \(\frac {\ln \left (\ln \left (-{\mathrm e}^{\frac {x^{2}+6 x -9}{9 x}}+7\right )\right )}{x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 30, normalized size = 1.20 \begin {gather*} \frac {\log \left (x \log \left (-e^{\left (\frac {1}{9} \, x + \frac {2}{3}\right )} + 7 \, e^{\frac {1}{x}}\right ) - 1\right ) - \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.29, size = 22, normalized size = 0.88 \begin {gather*} \frac {\ln \left (\ln \left (7-{\mathrm {e}}^{x/9}\,{\mathrm {e}}^{2/3}\,{\mathrm {e}}^{-\frac {1}{x}}\right )\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 20, normalized size = 0.80 \begin {gather*} \frac {\log {\left (\log {\left (7 - e^{\frac {\frac {x^{2}}{9} + \frac {2 x}{3} - 1}{x}} \right )} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________